STRUCTRAL STABILITY AND DESIGN

Chapter 1. Introduction to Structural Stability

OUTLINE

- Definition of stability
- Types of instability
- Methods of stability analyses
- Examples - small deflection analyses
- Examples - large deflection analyses
- Examples - imperfect systems
- Design of steel structures

STABILITY DEFINITION

- Change in geometry of a structure or structural component under compression - resulting in loss of ability to resist loading is defined as instability in the book.
- Instability can lead to catastrophic failure \rightarrow must be accounted in design. Instability is a strength-related limit state.
- Why did we define instability instead of stability? Seem strange!
- Stability is not easy to define.
- Every structure is in equilibrium - static or dynamic. If it is not in equilibrium, the body will be in motion or a mechanism.
- A mechanism cannot resist loads and is of no use to the civil engineer.
- Stability qualifies the state of equilibrium of a structure. Whether it is in stable or unstable equilibrium.

STABILITY DEFINITION

- Structure is in stable equilibrium when small perturbations do not cause large movements like a mechanism. Structure vibrates about it equilibrium position.
- Structure is in unstable equilibrium when small perturbations produce large movements - and the structure never returns to its original equilibrium position.
- Structure is in neutral equilibrium when we cant decide whether it is in stable or unstable equilibrium. Small perturbation cause large movements - but the structure can be brought back to its original equilibrium position with no work.
- Thus, stability talks about the equilibrium state of the structure.
- The definition of stability had nothing to do with a change in the geometry of the structure under compression - seems strange!

STABILITY DEFINITION

(a) STABLE EQULIBRXUM

(b) UNSTABLE EQUILIBPIUA

(c) NI THEAL FOUII HARIUM

BUCKLING Vs. STABILITY

- Change in geometry of structure under compression - that results in its ability to resist loads - called instability.
- Not true - this is called buckling.
- Buckling is a phenomenon that can occur for structures under compressive loads.
- The structure deforms and is in stable equilibrium in state-1.
- As the load increases, the structure suddenly changes to deformation state-2 at some critical load $P_{c r}$.
- The structure buckles from state-1 to state-2, where state-2 is orthogonal (has nothing to do, or independent) with state-1.
- What has buckling to do with stability?
- The question is - Is the equilibrium in state-2 stable or unstable?
- Usually, state-2 after buckling is either neutral or unstable equilibrium

BUCKLING

BUCKLING Vs. STABILITY

- Thus, there are two topics we will be interested in this course
- Buckling - Sudden change in deformation from state-1 to state-2
- Stability of equilibrium - As the loads acting on the structure are increased, when does the equilibrium state become unstable?
- The equilibrium state becomes unstable due to:
- Large deformations of the structure
- Inelasticity of the structural materials
- We will look at both of these topics for
- Columns
- Beams
- Beam-Columns
- Structural Frames

TYPES OF INSTABILITY

Structure subjected to compressive forces can undergo:

1. Buckling - bifurcation of equilibrium from deformation state-1 to state-2.

- Bifurcation buckling occurs for columns, beams, and symmetric frames under gravity loads only

2. Failure due to instability of equilibrium state-1 due to large deformations or material inelasticity

- Elastic instability occurs for beam-columns, and frames subjected to gravity and lateral loads.
- Inelastic instability can occur for all members and the frame.
- We will study all of this in this course because we don't want our designed structure to buckle or fail by instability - both of which are strength limit states.

TYPES OF INSTABILITY

BIFURCATION BUCKLING

- Member or structure subjected to loads. As the load is increased, it reaches a critical value where:
- The deformation changes suddenly from state-1 to state-2.
- And, the equilibrium load-deformation path bifurcates.
- Critical buckling load when the load-deformation path bifurcates
- Primary load-deformation path before buckling
- Secondary load-deformation path post buckling
- Is the post-buckling path stable or unstable?

SYMMETRIC BIFURCATION

- Post-buckling load-deform. paths are symmetric about load axis.
- If the load capacity increases after buckling then stable symmetric bifurcation.
- If the load capacity decreases after buckling then unstable symmetric bifurcation.

(a) STABLE SYMMETRIC BIFURCATION

(b) UNSTABLE SYMMETRIC BIFURCATION

ASYMMETRIC BIFURCATION

- Post-buckling behavior that is asymmetric about load axis.

INSTABILITY FAILURE

- There is no bifurcation of the load-deformation path. The deformation stays in state-1 throughout
- The structure stiffness decreases as the loads are increased. The change is stiffness is due to large deformations and / or material inelasticity.
- The structure stiffness decreases to zero and becomes negative.
- The load capacity is reached when the stiffness becomes zero.
- Neutral equilibrium when stiffness becomes zero and unstable equilibrium when stiffness is negative.
- Structural stability failure - when stiffness becomes negative.

INSTABILITY FAILURE

- FAILURE OF BEAM-COLUMNS

No bifurcation.
Instability due to material
and geometric nonlinearity

INSTABILITY FAILURE

- Snap-through buckling

INSTABILITY FAILURE

- Shell Buckling failure - very sensitive to imperfections

Chapter 1. Introduction to Structural Stability

OUTLINE

- Definition of stability
- Types of instability
- Methods of stability analyses
- Examples - small deflection analyses
- Examples - large deflection analyses
- Examples - imperfect systems
- Design of steel structures

METHODS OF STABILITY ANALYSES

- Bifurcation approach - consists of writing the equation of equilibrium and solving it to determine the onset of buckling.
- Energy approach - consists of writing the equation expressing the complete potential energy of the system. Analyzing this total potential energy to establish equilibrium and examine stability of the equilibrium state.
- Dynamic approach - consists of writing the equation of dynamic equilibrium of the system. Solving the equation to determine the natural frequency (ω) of the system. Instability corresponds to the reduction of ω to zero.

STABILITY ANALYSES

Each method has its advantages and disadvantages. In fact, you can use different methods to answer different questions

- The bifurcation approach is appropriate for determining the critical buckling load for a (perfect) system subjected to loads.
- The deformations are usually assumed to be small.
- The system must not have any imperfections.
- It cannot provide any information regarding the post-buckling loaddeformation path.
- The energy approach is the best when establishing the equilibrium equation and examining its stability
- The deformations can be small or large.
- The system can have imperfections.
- It provides information regarding the post-buckling path if large deformations are assumed
- The major limitation is that it requires the assumption of the deformation state, and it should include all possible degrees of freedom.

STABILITY ANALYSIS

- The dynamic method is very powerful, but we will not use it in this class at all.
- Remember, it though when you take the course in dynamics or earthquake engineering
- In this class, you will learn that the loads acting on a structure change its stiffness. This is significant - you have not seen it before.

$$
M_{a}=\frac{4 E I}{L} \theta_{a} \quad M_{b}=\frac{2 E I}{L} \theta_{b}
$$

- What happens when an axial load is acting on the beam.
- The stiffness will no longer remain $4 E I / L$ and $2 E I / L$.
- Instead, it will decrease. The reduced stiffness will reduce the natural frequency and period elongation.
- You will see these in your dynamics and earthquake engineering class.

STABILITY ANALYSIS

- FOR ANY KIND OF BUCKLING OR STABILITY ANALYSIS NEED TO DRAW THE FREE BODY DIAGRAM OF THE DEFORMED STRUCTURE.
- WRITE THE EQUATION OF STATIC EQUILIBRIUM IN THE DEFORMED STATE
- WRITE THE ENERGY EQUATION IN THE DEFORMED STATE TOO.
- THIS IS CENTRAL TO THE TOPIC OF STABILITY ANALYSIS
- NO STABILITY ANALYSIS CAN BE PERFORMED IF THE FREE BODY DIAGRAM IS IN THE UNDEFORMED STATE

BIFURCATION ANALYSIS

- Always a small deflection analysis
- To determine $P_{c r}$ buckling load
- Need to assume buckled shape (state 2) to calculate

Example 1 - Rigid bar supported by rotational spring

Rigid bar subjected to axial force P Rotationally restrained at end

Step 1 - Assume a deformed shape that activates all possible d.o.f.

BIFURCATION ANALYSIS

- Write the equation of static equilibrium in the deformed state

$$
\begin{aligned}
+\sum M_{o}=0 & \therefore-k \theta+P L \sin \theta=0 \\
& \therefore P=\frac{k \theta}{L \sin \theta}
\end{aligned}
$$

For small deformations $\sin \theta=\theta$

$$
\therefore P_{c r}=\frac{k \theta}{L \theta}=\frac{k}{L}
$$

- Thus, the structure will be in static equilibrium in the deformed state when $P=P_{c r}=k / L$
- When $\mathrm{P}<\mathrm{P}_{\text {cr }}$, the structure will not be in the deformed state. The structure will buckle into the deformed state when $\mathrm{P}=\mathrm{P}_{\mathrm{cr}}$

BIFURCATION ANALYSIS

Example 2 - Rigid bar supported by translational spring at end

Assume deformed state that activates all possible d.o.f. Draw FBD in the deformed state

BIFURCATION ANALYSIS

Write equations of static equilibrium in deformed state

$$
\begin{aligned}
+\sum M_{o}=0 \quad & \therefore-(k L \sin \theta) \times L+P L \sin \theta=0 \\
& \therefore P=\frac{k L^{2} \sin \theta}{L \sin \theta}
\end{aligned}
$$

For small deformations $\sin \theta=\theta$

$$
\therefore P_{c r}=\frac{k L^{2} \theta}{L \theta}=k L
$$

- Thus, the structure will be in static equilibrium in the deformed state when $P=P_{c r}=k L$. When $P<P c r$, the structure will not be in the deformed state. The structure will buckle into the deformed state when $\mathrm{P}=\mathrm{P}_{\mathrm{cr}}$

BIFURCATION ANALYSIS

Example 3 - Three rigid bar system with two rotational springs

Assume deformed state that activates all possible d.o.f. Draw FBD in the deformed state

Assume small deformations. Therefore, $\sin \theta=\theta$

BIFURCATION ANALYSIS

Write equations of static equilibrium in deformed state

$$
\begin{array}{lll}
C+\sum M_{B}=0 & \therefore k\left(2 \theta_{1}-\theta_{2}\right)-P L \sin \theta_{1}=0 & \therefore k\left(2 \theta_{1}-\theta_{2}\right)-P L \theta_{1}=0 \\
C+\sum M_{C}=0 & \therefore-k\left(2 \theta_{2}-\theta_{1}\right)+P L \sin \theta_{2}=0 & \therefore-k\left(2 \theta_{2}-\theta_{1}\right)+P L \theta_{2}=0
\end{array}
$$

BIFURCATION ANALYSIS

- Equations of Static Equilibrium

$$
\begin{array}{cc}
k\left(2 \theta_{1}-\theta_{2}\right)-P L \theta_{1}=0 \\
-k\left(2 \theta_{2}-\theta_{1}\right)+P L \theta_{2}=0
\end{array} \quad \therefore\left[\begin{array}{cc}
2 k-P L & -k \\
-k & 2 k-P L
\end{array}\right]\left\{\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

- Therefore either θ_{1} and θ_{2} are equal to zero or the determinant of the coefficient matrix is equal to zero.
- When θ_{1} and θ_{2} are not equal to zero - that is when buckling occurs the coefficient matrix determinant has to be equal to zero for equil.
- Take a look at the matrix equation. It is of the form $[A]\{x\}=\{0\}$. It can also be rewritten as $([\mathrm{K}]-\lambda[I])\{\mathrm{x}\}=\{0\}$

$$
\therefore\left(\left[\begin{array}{cc}
\frac{2 k}{L} & -\frac{k}{L} \\
-\frac{k}{L} & \frac{2 k}{L}
\end{array}\right]-P\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left\{\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

BIFURCATION ANALYSIS

- This is the classical eigenvalue problem. $([\mathrm{K}]-\lambda[\mathrm{II})\{\mathrm{x}\}=\{0\}$.
- We are searching for the eigenvalues (λ) of the stiffness matrix $[K]$. These eigenvalues cause the stiffness matrix to become singular
- Singular stiffness matrix means that it has a zero value, which means that the determinant of the matrix is equal to zero.

$$
\begin{aligned}
& \left|\begin{array}{cc}
2 k-P L & -k \\
-k & 2 k-P L
\end{array}\right|=0 \\
& \therefore(2 k-P L)^{2}-k^{2}=0 \\
& \therefore(2 k-P L+k) \bullet(2 k-P L-k)=0 \\
& \therefore(3 k-P L) \bullet(k-P L)=0 \\
& \therefore P_{c r}=\frac{3 k}{L} \operatorname{or} \frac{k}{L}
\end{aligned}
$$

- Smallest value of P_{cr} will govern. Therefore, $\mathrm{P}_{\mathrm{cr}}=\mathrm{k} / \mathrm{L}$

BIFURCATION ANALYSIS

- Each eigenvalue or critical buckling load $\left(\mathrm{P}_{\mathrm{cr}}\right)$ corresponds to a buckling shape that can be determined as follows
- $\mathrm{P}_{\mathrm{cr}}=\mathrm{k} / \mathrm{L}$. Therefore substitute in the equations to determine θ_{1} and θ_{2}

$$
\begin{aligned}
& k\left(2 \theta_{1}-\theta_{2}\right)-P L \theta_{1}=0 \\
& \text { Let } P=P_{c r}=k / L \\
& \therefore k\left(2 \theta_{1}-\theta_{2}\right)-k \theta_{1}=0 \\
& \therefore k \theta_{1}-k \theta_{2}=0 \\
& \therefore \theta_{1}=\theta_{2}
\end{aligned}
$$

$$
\begin{aligned}
& -k\left(2 \theta_{2}-\theta_{1}\right)+P L \theta_{2}=0 \\
& \text { Let } P=P_{c r}=k / L \\
& \therefore-k\left(2 \theta_{2}-\theta_{1}\right)+k \theta_{2}=0 \\
& \therefore k \theta_{1}-k \theta_{2}=0 \\
& \therefore \theta_{1}=\theta_{2} \\
& \hline
\end{aligned}
$$

- All we could find is the relationship between θ_{1} and θ_{2}. Not their specific values. Remember that this is a small deflection analysis. So, the values are negligible. What we have found is the buckling shape - not its magnitude.
- The buckling mode is such that $\theta_{1}=\theta_{2} \rightarrow$ Symmetric buckling mode

BIFURCATION ANALYSIS

- Second eigenvalue was $\mathrm{P}_{\mathrm{cr}}=3 \mathrm{k} / \mathrm{L}$. Therefore substitute in the equations to determine θ_{1} and θ_{2}

$$
\begin{aligned}
& k\left(2 \theta_{1}-\theta_{2}\right)-P L \theta_{1}=0 \\
& \text { Let } P=P_{c r}=3 k / L \\
& \therefore k\left(2 \theta_{1}-\theta_{2}\right)-3 k \theta_{1}=0 \\
& \therefore-k \theta_{1}-k \theta_{2}=0 \\
& \therefore \theta_{1}=-\theta_{2}
\end{aligned}
$$

$$
\begin{aligned}
& -k\left(2 \theta_{2}-\theta_{1}\right)+P L \theta_{2}=0 \\
& \text { Let } P=P_{c r}=3 k / L \\
& \therefore-k\left(2 \theta_{2}-\theta_{1}\right)+3 k \theta_{2}=0 \\
& \therefore k \theta_{1}+k \theta_{2}=0 \\
& \therefore \theta_{1}=-\theta_{2}
\end{aligned}
$$

- All we could find is the relationship between θ_{1} and θ_{2}. Not their specific values. Remember that this is a small deflection analysis. So, the values are negligible. What we have found is the buckling shape - not its magnitude.
- The buckling mode is such that $\theta_{1}=-\theta_{2} \rightarrow$ Antisymmetric buckling mode

BIFURCATION ANALYSIS

- Homework No. 1
- Problem 1.1
- Problem 1.3
- Problem 1.4
- All problems from the textbook on Stability by W.F. Chen

Chapter 1. Introduction to Structural Stability

OUTLINE

- Definition of stability
- Types of instability
- Methods of stability analyses
- Bifurcation analysis examples - small deflection analyses
- Energy method
- Examples - small deflection analyses
- Examples - large deflection analyses
- Examples - imperfect systems
- Design of steel structures

ENERGY METHOD

- We will currently look at the use of the energy method for an elastic system subjected to conservative forces.
- Total potential energy of the system - П-depends on the work done by the external forces $\left(\mathrm{W}_{\mathrm{e}}\right)$ and the strain energy stored in the system (U).
- $\Pi=U-W_{e}$.
- For the system to be in equilibrium, its total potential energy Π must be stationary. That is, the first derivative of Π must be equal to zero.
- Investigate higher order derivatives of the total potential energy to examine the stability of the equilibrium state, i.e., whether the equilibrium is stable or unstable

ENERGY METHD

- The energy method is the best for establishing the equilibrium equation and examining its stability
- The deformations can be small or large.
- The system can have imperfections.
- It provides information regarding the post-buckling path if large deformations are assumed
- The major limitation is that it requires the assumption of the deformation state, and it should include all possible degrees of freedom.

ENERGY METHOD

- Example 1 - Rigid bar supported by rotational spring
- Assume small deflection theory

Rigid bar subjected to axial force P Rotationally restrained at end

Step 1 - Assume a deformed shape that activates all possible d.o.f.

ENERGY METHOD - SMALL DEFLECTIONS

- Write the equation representing the total potential energy of system

$$
\begin{aligned}
& \Pi=U-W_{e} \\
& U=\frac{1}{2} k \theta^{2} \\
& W_{e}=P L(1-\cos \theta) \\
& \Pi=\frac{1}{2} k \theta^{2}-P L(1-\cos \theta) \\
& \frac{d \Pi}{d \theta}=k \theta-P L \sin \theta
\end{aligned}
$$

$$
\text { For equilibrium; } \frac{d \Pi}{d \theta}=0
$$

$$
\text { Therefore, } \quad k \theta-P L \sin \theta=0
$$

$$
\text { For small deflection s; } k \theta-P L \theta=0
$$

$$
\text { Therefore, } P_{c r}=\frac{k}{L}
$$

ENERGY METHOD - SMALL DEFLECTIONS

- The energy method predicts that buckling will occur at the same load P_{cr} as the bifurcation analysis method.
- At $P_{c r}$, the system will be in equilibrium in the deformed.
- Examine the stability by considering further derivatives of the total potential energy
- This is a small deflection analysis. Hence θ will be \rightarrow zero.
- In this type of analysis, the further derivatives of $П$ examine the stability of the initial state-1 (when $\theta=0$)

$$
\begin{aligned}
& \Pi=\frac{1}{2} k \theta^{2}-P L(1-\cos \theta) \\
& \frac{d \Pi}{d \theta}=k \theta-P L \sin \theta=k \theta-P L \theta \\
& \frac{d^{2} \Pi}{d \theta^{2}}=k-P L
\end{aligned}
$$

| When $P<P_{c r}$ | $\frac{d^{2} \Pi}{d \theta^{2}} \quad>0$ | \therefore Stable equilibrium |
| :--- | :--- | :--- | :--- |
| When $P>P_{c r}$ | $\frac{d^{2} \Pi}{d \theta^{2}}<0$ | \therefore Unstable equilibrium |
| When $P=P_{c r}$ | $\frac{d^{2} \Pi}{d \theta^{2}}=0$ | \therefore Not sure |

ENERGY METHOD - SMALL DEFLECTIONS

- In state- 1 , stable when $P<P_{c r}$, unstable when $P>P_{c r}$
- No idea about state during buckling.
- No idea about post-buckling equilibrium path or its stability.

ENERGY METHOD - LARGE DEFLECTIONS

- Example 1 - Large deflection analysis (rigid bar with rotational spring)

$$
\begin{aligned}
& \Pi=U-W_{e} \\
& U=\frac{1}{2} k \theta^{2} \\
& W_{e}=P L(1-\cos \theta) \\
& \Pi=\frac{1}{2} k \theta^{2}-P L(1-\cos \theta) \\
& \frac{d \Pi}{d \theta}=k \theta-P L \sin \theta
\end{aligned}
$$

For equilibrium; $\frac{d \Pi}{d \theta}=0$
Therefore, $\quad k \theta-P L \sin \theta=0$
Therefore, $\quad P=\frac{k \theta}{L \sin \theta} \quad$ for equilibrium
The post-buckling $P-\theta$ relationship is given above

ENERGY METHOD - LARGE DEFLECTIONS

- Large deflection analysis
- See the post-buckling load-displacement path shown below
- The load carrying capacity increases after buckling at $P_{\text {cr }}$
- $P_{c r}$ is where $\theta \rightarrow 0$

Rigid bar with rotational spring

ENERGY METHOD - LARGE DEFLECTIONS

- Large deflection analysis - Examine the stability of equilibrium using higher order derivatives of Π

$$
\begin{aligned}
& \Pi=\frac{1}{2} k \theta^{2}-P L(1-\cos \theta) \\
& \frac{d \Pi}{d \theta}=k \theta-P L \sin \theta \\
& \frac{d^{2} \Pi}{d \theta^{2}}=k-P L \cos \theta \\
& \text { But, } P=\frac{k \theta}{L \sin \theta} \\
& \therefore \frac{d^{2} \Pi}{d \theta^{2}}=k-\frac{k \theta}{L \sin \theta} L \cos \theta \\
& \therefore \frac{d^{2} \Pi}{d \theta^{2}}=k\left(1-\frac{\theta}{\tan \theta}\right) \\
& \left.\therefore \frac{d^{2} \Pi}{d \theta^{2}}>0 \quad \text { Always (i.e., all values of } \theta\right) \\
& \therefore \frac{A l w a y s}{} S T A B L E \\
& \text { But, } \frac{d^{2} \Pi}{d \theta^{2}}=0 \text { for } \theta=0
\end{aligned}
$$

ENERGY METHOD - LARGE DEFLECTIONS

- At $\theta=0$, the second derivative of $\Pi=0$. Therefore, inconclusive.
- Consider the Taylor series expansion of Π at $\theta=0$

$$
\Pi=\left.\Pi\right|_{\theta=0}+\left.\frac{d \Pi}{d \theta}\right|_{\theta=0} \theta+\left.\frac{1}{2!} \frac{d^{2} \Pi}{d \theta^{2}}\right|_{\theta=0} \theta^{2}+\left.\frac{1}{3!} \frac{d^{3} \Pi}{d \theta^{3}}\right|_{\theta=0} \theta^{3}+\left.\frac{1}{4!} \frac{d^{4} \Pi}{d \theta^{4}}\right|_{\theta=0} \theta^{4}+\ldots . .+\left.\frac{1}{n!} \frac{d^{n} \Pi}{d \theta^{n}}\right|_{\theta=0} \theta^{n}
$$

- Determine the first non-zero term of Π,

$$
\begin{aligned}
& \begin{array}{l}
\Pi=\frac{1}{2} k \theta^{2}-P L(1-\cos \theta) \\
\frac{d \Pi}{d \theta}=k \theta-P L \sin \theta \\
\frac{d^{2} \Pi}{d \theta^{2}}=k-P L \cos \theta \\
\frac{d^{3} \Pi}{d \theta^{3}}=P L \sin \theta \\
\frac{d^{4} \Pi}{d \theta^{4}}=P L \cos \theta
\end{array} \\
& \begin{array}{l}
\left\lvert\, \begin{array}{l}
\left.\Pi\right|_{\partial=0}=0 \\
\frac{d \Pi}{d \theta} \\
\mid \theta=0 \\
\frac{d^{2} \Pi}{d \theta^{2}} \\
\left.\right|_{\theta=0}=0 \\
\left.\frac{d^{3} \Pi}{d \theta^{3}}\right|_{\partial=0}=P L \sin \theta=0 \\
\left.\frac{d^{4} \Pi}{d \theta^{4}}\right|_{\theta=0}=P L \cos \theta=P L=k
\end{array}\right.
\end{array} \\
& \left.\therefore \frac{1}{4!} \frac{d^{4} \Pi}{d \theta^{4}}\right|_{\theta=0} \theta^{4}=\frac{1}{24} k \theta^{4}>0
\end{aligned}
$$

- Since the first non-zero term is >0, the state is stable at $P=P_{c r}$ and $\theta=0$

ENERGY METHOD - LARGE DEFLECTIONS

$$
-\infty-\theta 0=0
$$

ENERGY METHOD - IMPERFECT SYSTEMS

- Consider example 1 - but as a system with imperfections
- The initial imperfection given by the angle θ_{0} as shown below

- The free body diagram of the deformed system is shown below

ENERGY METHOD - IMPERFECT SYSTEMS

$\Pi=U-W_{e}$
$U=\frac{1}{2} k\left(\theta-\theta_{0}\right)^{2}$

$W_{e}=P L\left(\cos \theta_{0}-\cos \theta\right)$
$\Pi=\frac{1}{2} k\left(\theta-\theta_{0}\right)^{2}-P L\left(\cos \theta_{0}-\cos \theta\right)$
$\frac{d \Pi}{d \theta}=k\left(\theta-\theta_{0}\right)-P L \sin \theta$
For equilibrium; $\frac{d \Pi}{d \theta}=0$
Therefore, $\quad k\left(\theta-\theta_{0}\right)-P L \sin \theta=0$
Therefore, $\quad P=\frac{k\left(\theta-\theta_{0}\right)}{L \sin \theta} \quad$ for equilibrium
The equilibrium $P-\theta$ relationship is given above

ENERGY METHOD - IMPERFECT SYSTEMS

$$
P=\frac{k\left(\theta-\theta_{0}\right)}{L \sin \theta} \quad \therefore \frac{P}{P_{c r}}=\frac{\theta-\theta_{0}}{\sin \theta}
$$

$P-\theta$ relationships for different values of θ_{0} shown below :

$$
-\bigcirc-\theta 0=0-\infty-\theta 0=0.05-\bigcirc-\theta 0=0.1-\bigcirc-\theta 0=0.2-\bigcirc-\theta 0=0.3
$$

ENERGY METHODS - IMPERFECT SYSTEMS

- As shown in the figure, deflection starts as soon as loads are applied. There is no bifurcation of load-deformation path for imperfect systems. The load-deformation path remains in the same state through-out.
- The smaller the imperfection magnitude, the close the loaddeformation paths to the perfect system load -deformation path
- The magnitude of load, is influenced significantly by the imperfection magnitude.
- All real systems have imperfections. They may be very small but will be there
- The magnitude of imperfection is not easy to know or guess. Hence if a perfect system analysis is done, the results will be close for an imperfect system with small imperfections

ENERGY METHODS - IMPERFECT SYSTEMS

- Examine the stability of the imperfect system using higher order derivatives of Π

$$
\begin{aligned}
& \Pi=\frac{1}{2} k\left(\theta-\theta_{0}\right)^{2}-P L\left(\cos \theta_{0}-\cos \theta\right) \\
& \frac{d \Pi}{d \theta}=k\left(\theta-\theta_{0}\right)-P L \sin \theta \\
& \frac{d^{2} \Pi}{d \theta^{2}}=k-P L \cos \theta \\
& \therefore \text { Equilibrium path will be stable } \\
& \text { if } \frac{d^{2} \Pi}{d \theta^{2}}>0 \\
& \text { i.e., if } k-P L \cos \theta>0 \\
& \text { i.e., if } P<\frac{k}{L \cos \theta} \\
& \text { i.e., if } \frac{k\left(\theta-\theta_{0}\right)}{L \sin \theta}<\frac{k}{L \cos \theta} \\
& \text { i.e., } \theta-\theta_{0}<\tan \theta
\end{aligned}
$$

- Which is always true, hence always in STABLE EQUILIBRIUM

ENERGY METHOD - SMALL DEFLECTIONS

Example 2 - Rigid bar supported by translational spring at end

Assume deformed state that activates all possible d.o.f. Draw FBD in the deformed state

ENERGY METHOD - SMALL DEFLECTIONS

Write the equation representing the total potential energy of system

$$
\begin{aligned}
& \Pi=U-W_{e} \\
& U=\frac{1}{2} k(L \sin \theta)^{2}=\frac{1}{2} k L^{2} \theta^{2} \\
& W_{e}=P L(1-\cos \theta) \\
& \Pi=\frac{1}{2} k L^{2} \theta^{2}-P L(1-\cos \theta) \\
& \frac{d \Pi}{d \theta}=k L^{2} \theta-P L \sin \theta
\end{aligned}
$$

For equilibrium; $\frac{d \Pi}{d \theta}=0$
Therefore, $\quad k L^{2} \theta-P L \sin \theta=0$
For small deflection $s ; k L^{2} \theta-P L \theta=0$
Therefore, $P_{c r}=k L$

ENERGY METHOD - SMALL DEFLECTIONS

- The energy method predicts that buckling will occur at the same load P_{cr} as the bifurcation analysis method.
- At $P_{c r}$, the system will be in equilibrium in the deformed. Examine the stability by considering further derivatives of the total potential energy
- This is a small deflection analysis. Hence θ will be \rightarrow zero.
- In this type of analysis, the further derivatives of $П$ examine the stability of the initial state- 1 (when $\theta=0$)

$$
\begin{aligned}
& \Pi=\frac{1}{2} k L^{2} \theta^{2}-P L(1-\cos \theta) \\
& \frac{d \Pi}{d \theta}=k L^{2} \theta-P L \sin \theta \\
& \frac{d^{2} \Pi}{d \theta^{2}}=k L^{2}-P L \cos \theta \\
& \text { For small deflection s and } \theta=0 \\
& \frac{d^{2} \Pi}{d \theta^{2}}=k L^{2}-P L
\end{aligned}
$$

$$
\begin{array}{|lll}
\hline \text { When, } P<k L & \frac{d^{2} \Pi}{d \theta^{2}}>0 & \therefore \text { STABLE } \\
\text { When, } P>k L & \frac{d^{2} \Pi}{d \theta^{2}}<0 & \therefore \text { UNSTABLE } \\
\text { When } P=k L & \frac{d^{2} \Pi}{d \theta^{2}}=0 & \therefore \text { INDETERMINATE } \\
\hline
\end{array}
$$

ENERGY METHOD - LARGE DEFLECTIONS

Write the equation representing the total potential energy of system
$\Pi=U-W_{e}$
$U=\frac{1}{2} k(L \sin \theta)^{2}$
$W_{e}=P L(1-\cos \theta)$
$\Pi=\frac{1}{2} k L^{2} \sin ^{2} \theta-P L(1-\cos \theta)$

$\frac{d \Pi}{d \theta}=k L^{2} \sin \theta \cos \theta-P L \sin \theta$
For equilibrium; $\frac{d \Pi}{d \theta}=0$
Therefore, $\quad k L^{2} \sin \theta \cos \theta-P L \sin \theta=0$
Therefore, $\quad P=k L \cos \theta$ for equilibrium
The post-buckling $P-\theta$ relationship is given above

ENERGY METHOD - LARGE DEFLECTIONS

- Large deflection analysis
- See the post-buckling load-displacement path shown below
- The load carrying capacity decreases after buckling at $P_{\text {cr }}$
- $P_{\text {cr }}$ is where $\theta \rightarrow 0$

Rigid bar with translational spring

ENERGY METHOD - LARGE DEFLECTIONS

- Large deflection analysis - Examine the stability of equilibrium using higher order derivatives of Π

$$
\begin{aligned}
& \Pi=\frac{1}{2} k L^{2} \sin ^{2} \theta-P L(1-\cos \theta) \\
& \frac{d \Pi}{d \theta}=k L^{2} \sin \theta \cos \theta-P L \sin \theta \\
& \frac{d^{2} \Pi}{d \theta^{2}}=k L^{2} \cos 2 \theta-P L \cos \theta \\
& \text { For equilibrium } P=k L \cos \theta \\
& \therefore \frac{d^{2} \Pi}{d \theta^{2}}=k L^{2} \cos 2 \theta-k L^{2} \cos ^{2} \theta \\
& \therefore \frac{d^{2} \Pi}{d \theta^{2}}=k L^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)-k L^{2} \cos ^{2} \theta \\
& \therefore \frac{d^{2} \Pi}{d \theta^{2}}=-k L^{2} \sin ^{2} \theta \\
& \therefore \frac{d^{2} \Pi}{d \theta^{2}}<0 \quad \text { ALWAYS. HENCE UNSTABLE }
\end{aligned}
$$

ENERGY METHOD - LARGE DEFLECTIONS

- At $\theta=0$, the second derivative of $\Pi=0$. Therefore, inconclusive.
- Consider the Taylor series expansion of Π at $\theta=0$

$$
\Pi=\left.\Pi\right|_{\theta=0}+\left.\frac{d \Pi}{d \theta}\right|_{\theta=0} \theta+\left.\frac{1}{2!} \frac{d^{2} \Pi}{d \theta^{2}}\right|_{\theta=0} \theta^{2}+\left.\frac{1}{3!} \frac{d^{3} \Pi}{d \theta^{3}}\right|_{\theta=0} \theta^{3}+\left.\frac{1}{4!} \frac{d^{4} \Pi}{d \theta^{4}}\right|_{\theta=0} \theta^{4}+\ldots . .+\left.\frac{1}{n!} \frac{d^{n} \Pi}{d \theta^{n}}\right|_{\theta=0} \theta^{n}
$$

- Determine the first non-zero term of Π,

$$
\begin{array}{|l}
\begin{array}{l}
\Pi=\frac{1}{2} k L^{2} \sin ^{2} \theta-P L(1-\cos \theta)=0 \\
\frac{d \Pi}{d \theta}=\frac{1}{2} k L^{2} \sin 2 \theta-P L \sin \theta=0 \\
\frac{d^{2} \Pi}{d \theta^{2}}=k L^{2} \cos 2 \theta-P L \cos \theta=0 \\
\frac{d^{3} \Pi}{d \theta^{3}}=-2 k L^{2} \sin 2 \theta+P L \sin \theta=0
\end{array}
\end{array} \begin{aligned}
& \frac{d^{4} \Pi}{d \theta^{4}}=-4 k L^{2} \cos 2 \theta+P L \cos \theta \\
& \therefore \frac{d^{4} \Pi}{d \theta^{4}}=-4 k L^{2}+k L^{2}=-3 k L^{2} \\
& \therefore \frac{d^{4} \Pi}{d \theta^{4}}<0 \\
& \therefore \text { UNSTABLE at } \theta=0 \text { when buckling occurs } \\
& \hline
\end{aligned}
$$

- Since the first non-zero term is <0, the state is unstable at $P=P_{c r}$ and $\theta=$

ENERGY METHOD - LARGE DEFLECTIONS

Rigid bar with translational spring

ENERGY METHOD - IMPERFECTIONS

- Consider example 2 - but as a system with imperfections
- The initial imperfection given by the angle θ_{0} as shown below

- The free body diagram of the deformed system is shown below

ENERGY METHOD - IMPERFECTIONS

$$
\begin{aligned}
& \Pi=U-W_{e} \\
& U=\frac{1}{2} k L^{2}\left(\sin \theta-\sin \theta_{0}\right)^{2} \\
& W_{e}=P L\left(\cos \theta_{0}-\cos \theta\right)
\end{aligned}
$$

$\Pi=\frac{1}{2} k L^{2}\left(\sin \theta-\sin \theta_{0}\right)^{2}-P L\left(\cos \theta_{0}-\cos \theta\right)$
$\frac{d \Pi}{d \theta}=k L^{2}\left(\sin \theta-\sin \theta_{0}\right) \cos \theta-P L \sin \theta$
For equilibrium; $\frac{d \Pi}{d \theta}=0$
Therefore, $\quad k L^{2}\left(\sin \theta-\sin \theta_{0}\right) \cos \theta-P L \sin \theta=0$
Therefore, $\quad P=k L \cos \theta\left(1-\frac{\sin \theta_{0}}{\sin \theta}\right) \quad$ for equilibrium
The equilibrium $P-\theta$ relationship is given above

ENERGY METHOD - IMPERFECTIONS


```
-O-00=0-~-00=0.05 -- 00=0.1 --- 00=0.2 - - 00=0.3
```


ENERGY METHOD - IMPERFECTIONS

- As shown in the figure, deflection starts as soon as loads are applied. There is no bifurcation of load-deformation path for imperfect systems. The load-deformation path remains in the same state through-out.
- The smaller the imperfection magnitude, the close the loaddeformation paths to the perfect system load -deformation path.
- The magnitude of load, is influenced significantly by the imperfection magnitude.
- All real systems have imperfections. They may be very small but will be there
- The magnitude of imperfection is not easy to know or guess. Hence if a perfect system analysis is done, the results will be close for an imperfect system with small imperfections.
- However, for an unstable system - the effects of imperfections may be too large.

ENERGY METHODS - IMPERFECT SYSTEMS

- Examine the stability of the imperfect system using higher order derivatives of Π

$$
\begin{aligned}
& \Pi=\frac{1}{2} k L^{2}\left(\sin \theta-\sin \theta_{0}\right)^{2}-P L\left(\cos \theta_{0}-\cos \theta\right) \\
& \frac{d \Pi}{d \theta}=k L^{2}\left(\sin \theta-\sin \theta_{0}\right) \cos \theta-P L \sin \theta \\
& \frac{d^{2} \Pi}{d \theta^{2}}=k L^{2}\left(\cos 2 \theta+\sin \theta_{0} \sin \theta\right)-P L \cos \theta \\
& \text { For equilibrium } P=k L\left(1-\frac{\sin \theta_{0}}{\sin \theta}\right) \\
\therefore & \frac{d^{2} \Pi}{d \theta^{2}}=k L^{2}\left(\cos 2 \theta+\sin \theta_{0} \sin \theta\right)-k L^{2}\left(1-\frac{\sin \theta_{0}}{\sin \theta}\right) \cos ^{2} \theta \\
\therefore & \frac{d^{2} \Pi}{d \theta^{2}}=k L^{2}\left[\cos { }^{2} \theta-\sin { }^{2} \theta+\sin \theta_{0} \sin \theta-\cos ^{2} \theta+\frac{\sin \theta_{0} \cos ^{2} \theta}{\sin \theta}\right] \\
\therefore & \frac{d^{2} \Pi}{d \theta^{2}}=k L^{2}\left[-\sin ^{2} \theta+\sin \theta_{0} \sin \theta+\frac{\sin \theta_{0} \cos ^{2} \theta}{\sin \theta}\right] \\
\therefore & \frac{d^{2} \Pi}{d \theta^{2}}=k L^{2}\left[\frac{-\sin ^{3} \theta+\sin \theta_{0}\left(\sin { }^{2} \theta+\cos ^{2} \theta\right)}{\sin \theta}\right] \\
\therefore & \frac{d^{2} \Pi}{d \theta^{2}}=k L^{2}\left[\frac{-\sin ^{3} \theta+\sin \theta_{0}}{\sin \theta}\right]
\end{aligned}
$$

ENERGY METHOD - IMPERFECT SYSTEMS

$$
\begin{aligned}
& \frac{d^{2} \Pi}{d \theta^{2}}=k L^{2}\left[\frac{-\sin ^{3} \theta+\sin \theta_{0}}{\sin \theta}\right] \\
& \frac{d^{2} \Pi}{d \theta^{2}}>0 \text { when } P<P_{\max } \quad \therefore \text { Stable } \\
& \frac{d^{2} \Pi}{d \theta^{2}}<0 \text { when } P>P_{\max } \quad \therefore \text { Unstable }
\end{aligned}
$$

$P=k L \cos \theta\left(1-\frac{\sin \theta_{0}}{\sin \theta}\right) \quad$ and $\quad P_{\text {max }}=k L \cos ^{3} \theta$
When $P<P_{\text {max }}$

$$
\begin{aligned}
& k L \cos \theta\left(1-\frac{\sin \theta_{0}}{\sin \theta}\right)<k L \cos ^{3} \theta \\
& \therefore 1-\frac{\sin \theta_{0}}{\sin \theta}<\cos ^{2} \theta \\
& \therefore 1-\frac{\sin \theta_{0}}{\sin \theta}<1-\sin ^{2} \theta \\
& \therefore \sin \theta_{0}>\sin ^{3} \theta \quad \text { and } \quad \frac{d^{2} \Pi}{d \theta^{2}}=k L^{2}\left[\frac{\sin \theta_{0}-\sin ^{3} \theta}{\sin \theta}\right]>0
\end{aligned}
$$

When $P>P_{\max }$

$$
\begin{aligned}
& k L \cos \theta\left(1-\frac{\sin \theta_{0}}{\sin \theta}\right)>k L \cos ^{3} \theta \\
& \therefore 1-\frac{\sin \theta_{0}}{\sin \theta}>\cos ^{2} \theta \\
& \therefore 1-\frac{\sin \theta_{0}}{\sin \theta}>1-\sin ^{2} \theta
\end{aligned}
$$

$$
\therefore \sin \theta_{0}<\sin ^{3} \theta \quad \text { and } \quad \frac{d^{2} \Pi}{d \theta^{2}}=k L^{2}\left[\frac{\sin \theta_{0}-\sin ^{3} \theta}{\sin \theta}\right]<0
$$

Chapter 2. - Second-Order Differential Equations

- This chapter focuses on deriving second-order differential equations governing the behavior of elastic members
- 2.1 - First order differential equations
- 2.2 - Second-order differential equations

2.1 First-Order Differential Equations

- Governing the behavior of structural members
- Elastic, Homogenous, and Isotropic
- Strains and deformations are really small - small deflection theory
- Equations of equilibrium in undeformed state
- Consider the behavior of a beam subjected to bending and axial forces

2.1 First-Order Differential Equations

- Assume tensile forces are positive and moments are positive according to the right-hand rule
- Longitudinal stress due to bending

$$
\sigma=\frac{P}{A}+\frac{M_{x}}{I_{x}} y-\frac{M_{y}}{I_{y}} x
$$

- This is true when the $x-y$ axis system is
a centroidal and principal axis system.

$$
\begin{aligned}
& \int_{A} y d A=\int_{A} x d A=\int_{A} x y d A=0 \quad \therefore \text { Centroidal axis } \\
& \int_{A} d A=A ; \quad \int_{A} x^{2} d A=I_{y} ; \quad \int_{A} y^{2} d A=I_{x} \\
& I_{x} \text { and } I_{y} \text { are principal moment of inertia }
\end{aligned}
$$

2.1 First-Order Differential Equations

- The corresponding strain is $\varepsilon=\frac{P}{A E}+\frac{M_{x}}{E I_{x}} y-\frac{M_{y}}{E I_{y}} x$
- If $\mathrm{P}=\mathrm{M}_{\mathrm{y}}=0$, then $\varepsilon=\frac{M_{x}}{E I_{x}} y$
- Plane-sections remain plane and perpendicular to centroidal axis before and after bending
- The measure of bending is curvature ϕ which denotes the change in the slope of the centroidal axis between two point $d z$ apart

$$
\tan \phi_{y}=\frac{\varepsilon}{y}
$$

For small deformations $\tan \phi_{y} \cong \phi_{y}$

$$
\begin{aligned}
& \therefore \phi_{y}=\frac{\varepsilon}{y} \\
& \therefore \phi_{y}=\frac{M_{x}}{E I_{x}} \\
& \therefore M_{x}=E I_{x} \phi_{y} \quad \text { and similarly } M_{y}=E I_{y} \phi_{x}
\end{aligned}
$$

Fig. 2.2. Curvature, strain, and stress due to bending

2.1 First-Order Differential Equations

- Shear Stresses due to bending

$O\left(x_{1}, y_{1}\right)$ Origin of reference s
$E\left(x_{2}, y_{2}\right)$ End of reference s
$C(0,0)$ Centroid
$Q(x, y) \quad$ General point
$S\left(x_{0}, y_{0}\right)$ Shear center
$t(s) \quad$ Thickness, function of s
$s \quad$ Coordinate along middle line of cross section
$x, y \quad$ Principal centroidal axes
$z \quad$ Longitudinal centroidal axis
Fig. 2.3. Dimensions of a thin-walled open cross section

(a)

(b)

(c)

Fig. 2.4. Shear stresses on an element of a thin-walled open cross section

2.1 First-Order Differential Equations

- Differential equations of bending
- Assume principle of superposition
- Treat forces and deformations in $y-z$ and $x-z$ plane seperately
- Both the end shears and q_{y} act in a plane parallel to the $y-z$ plane through the shear center S

(b)

Fig. 2.6. Forces in the $y-z$ plane of a bar element

$$
\begin{aligned}
& \frac{d V_{y}}{d z}=-q_{y} \\
& \frac{d M_{x}}{d z}=V_{y} \\
& \therefore \frac{d^{2} M_{x}}{d z^{2}}=-q_{y} \\
& \therefore \frac{d^{2}\left(E I_{x} \phi_{y}\right)}{d z^{2}}=-q_{y} \\
& \therefore E I_{x} \phi_{y}^{\prime \prime}=-q_{y}
\end{aligned}
$$

2.1 First-Order Differential Equations

- Differential equations of bending

$$
\begin{aligned}
& E I_{x} \phi_{y}^{\prime \prime}=-q_{y} \\
& \phi_{y}=-\frac{v^{\prime \prime}}{\left[1+\left(v^{\prime}\right)^{2}\right]^{3 / 2}} \\
& \text { For small deflection } s \\
& \phi_{y}=-v^{\prime \prime} \\
& \therefore E I_{x} v^{i v}=q_{y} \\
& \text { Similarly } E I_{y} u^{i v}=q_{x} \\
& u \rightarrow \text { deflection in positive } x \text { direction } \\
& v \rightarrow \text { deflection in positive } y \text { direction }
\end{aligned}
$$

- Fourth-order differential equations using firstorder force-deformation theory

Torsion behavior - Pure and Warping Torsion

- Torsion behavior - uncoupled from bending behavior
- Thin walled open cross-section subjected to torsional moment
- This moment will cause twisting and warping of the cross-section.
- The cross-section will undergo pure and warping torsion behavior.
- Pure torsion will produce only shear stresses in the section
- Warping torsion will produce both longitudinal and shear stresses
- The internal moment produced by the pure torsion response will be equal to M_{sv} and the internal moment produced by the warping torsion response will be equal to M_{w}.
- The external moment will be equilibriated by the produced internal moments
- $\mathrm{M}_{\mathrm{z}}=\mathrm{M}_{\mathrm{SV}}+\mathrm{M}_{\mathrm{w}}$

Pure and Warping Torsion

$M_{z}=M_{S v}+M_{w}$
Where,

- $M_{S V}=G K_{T} \phi^{\prime}$ and $M_{W}=-E I_{w} \phi^{\prime \prime \prime}$
- $\mathrm{M}_{\mathrm{SV}}=$ Pure or Saint Venant's torsion moment
- $\mathrm{K}_{\mathrm{T}}=\mathrm{J}=$ Torsional constant $=$
- ϕ is the angle of twist of the cross-section. It is a function of z.
- I_{W} is the warping moment of inertia of the cross-section. This is a new cross-sectional property you may not have seen before.

$$
\mathrm{M}_{\mathrm{z}}=\mathrm{G} \mathrm{~K}_{\mathrm{T}} \phi^{\prime}-E \mathrm{I}_{\mathrm{w}} \phi^{\prime \prime \prime}
$$

(3), differential equation of torsion

Pure Torsion Differential Equation

- Lets look closely at pure or Saint Venant's torsion. This occurs when the warping of the cross-section is unrestrained or absent

$$
\begin{aligned}
& \gamma d z=r d \phi \\
& \therefore \gamma=r \frac{d \phi}{d z}=r \phi^{\prime} \\
& \therefore \tau=G r \phi^{\prime} \\
& \therefore M_{S V}=\int_{A} \tau r d A=G \phi^{\prime} \int_{A} r^{2} d A \\
& \therefore M_{S V}=G K_{T} \phi^{\prime} \\
& \text { where, } K_{T}=J=\int_{A} r^{2} d A
\end{aligned}
$$

- For a circular cross-section - warping is absent. For thin-walled open cross-sections, warping will occur.
- The out of plane warping deformation w can be calculated using an equation I will not show.

Pure Torsion Stresses

The torsional shear stresses vary linearly about the center of the thin plate

$$
\begin{aligned}
& \tau_{S V}=G r \phi^{\prime} \\
& \left(\tau_{S V}\right)_{\max }=G t \phi^{\prime}
\end{aligned}
$$

Warping deformations

- The warping produced by pure torsion can be restrained by the: (a) end conditions, or (b) variation in the applied torsional moment (non-uniform moment)
- The restraint to out-of-plane warping deformations will produce longitudinal stresses (σ_{w}), and their variation along the length will produce warping shear stresses $\left(\tau_{\mathrm{w}}\right)$.

Figure 8.5.2 Torsion of an I-shaped section.

Warping Torsion Differential Equation

- Lets take a look at an approximate derivation of the warping torsion differential equation.
- This is valid only for I and C shaped sections.
$u_{f}=\phi \frac{h}{2}$
where $u_{f}=$ flange lateral displacement
$M_{f}=$ moment in the flange
$V_{f}=$ Shear force in the flange

$E I_{f} u_{f}^{\prime \prime}=-M_{f} \quad \cdots \cdots \cdot$ borrowing d.e. of bending $_{\text {Figure }}$ 8.5.3 Warping shear
$E I_{f} u_{f}^{\prime \prime \prime}=-V_{f}$
$M_{W}=V_{f} h$
$\therefore M_{W}=-E I_{f} u_{f}^{\prime \prime \prime} h$
$\therefore M_{W}=-E I_{f} \frac{h^{2}}{2} \phi^{\prime \prime \prime}$
$\therefore M_{W}=-E I_{W} \phi^{\prime \prime \prime}$
where I_{W} is warping moment of inertia \rightarrow new sec tion property

Torsion Differential Equation Solution

- Torsion differential equation $M_{Z}=M_{S V}+M_{W}=G K_{T} \phi^{\prime}-E I_{W} \phi^{\prime \prime \prime}$
- This differential equation is for the case of concentrated torque $G K_{T} \phi^{\prime}-E I_{w} \phi^{\prime \prime \prime}=M_{Z}$

$$
\begin{aligned}
& \therefore \phi^{\prime \prime \prime}-\frac{G K_{T}}{E I_{W}} \phi^{\prime}=-\frac{M_{Z}}{E I_{W}} \\
& \therefore \phi^{\prime \prime \prime}-\lambda^{2} \phi^{\prime}=-\frac{M_{Z}}{E I_{W}}
\end{aligned}
$$

$$
\therefore \phi=C_{1}+C_{2} \cosh \lambda z+C_{3} \sinh \lambda z+\frac{M_{z} z}{\lambda^{2} E I_{W}}
$$

- Torsion differential equation for the case of distributed torque

$$
\begin{aligned}
& m_{Z}=-\frac{d M_{Z}}{d z} \\
& G K_{T} \phi^{\prime \prime}-E I_{w} \phi^{i v}=-m_{Z} \\
& \therefore \phi^{i v}-\frac{G K_{T}}{E I_{W}} \phi^{\prime \prime}=\frac{m_{Z}}{E I_{W}} \quad \therefore \phi=C_{4}+C_{5} z+C_{6} \cosh \lambda z+C_{7} \sinh \lambda z-\frac{m_{z} z^{2}}{2 G K_{T}} \\
& \therefore \phi^{i v}-\lambda^{2} \phi^{\prime \prime}=\frac{m_{Z}}{E I_{W}}
\end{aligned}
$$

- The coefficients $\mathrm{C}_{1}^{W} \ldots . \mathrm{C}_{6}$ can be obtained using end conditions

Torsion Differential Equation Solution

- Torsionally fixed end conditions are given by $\phi=\phi^{\prime}=0$
- These imply that twisting and warping at the fixed end are fully restrained. Therefore, equal to zero.
- Torsionally pinned or simply-supported end conditions given by:

$$
\phi=\phi^{\prime \prime}=0
$$

- These imply that at the pinned end twisting is fully restrained $(\phi=0)$ and warping is unrestrained or free. Therefore, $\sigma_{\mathrm{w}}=0 \rightarrow \phi "=0$
- Torsionally free end conditions given by $\phi^{\prime}=\phi^{\prime \prime}=\phi^{\prime \prime \prime}=0$
- These imply that at the free end, the section is free to warp and there are no warping normal or shear stresses.
- Results for various torsional loading conditions given in the AISC Design Guide 9 - can be obtained from my private site

Warping Torsion Stresses

- Restraint to warping produces longitudinal and shear stresses

$$
\begin{aligned}
& \sigma_{W}=E W_{n} \phi^{\prime \prime} \\
& \tau_{W} t=-E S_{W} \phi^{\prime \prime \prime} \\
& \text { where, } \\
& W_{n}=\text { Normalized Unit Warping - Section Pr operty } \\
& S_{W}=\text { Warping Statical Moment }- \text { Section Pr operty }
\end{aligned}
$$

- The variation of these stresses over the section is defined by the section property W_{n} and S_{w}
- The variation of these stresses along the length of the beam is defined by the derivatives of ϕ.
- Note that a major difference between bending and torsional behavior is
- The stress variation along length for torsion is defined by derivatives of ϕ, which cannot be obtained using force equilibrium.
- The stress variation along length for bending is defined by derivatives of v, which can be obtained using force equilibrium (M, V diagrams).

Torsional Stresses

(a) Positive Angle of Rotation
(c) Shear Stress Due to Warping

- Location of Shear Center $\tau_{\mathrm{t}}=\mathrm{Gt} \boldsymbol{\theta}^{\prime}$
(b) Shear Stress Due to Pure Torsion

(d) Normal Stress Due to Warping

Torsional Stresses

(a) Postivive Angle of Rotation

(c) Shear Stress Due to Warping

- Location of Shear Center
$\tau_{\mathrm{t}}=\mathrm{Gt} \boldsymbol{\theta}^{\prime}$
(b) Shear Stress Due to Pure Torsion

(d) Normal Stress Due to Warping

(a) Positive Angle of Rotation

(b) Shear Stress Due to Pure Torsion

(c) Shear Stress Due to Warping

$$
\sigma_{\omega s}=\mathrm{EW}_{\mathrm{ns}} \theta^{n}
$$

(d) Normal Stress Due to Warping

Torsional Section Properties for I and C Shapes

		W-, M-, S-, and HP-Shapes					
	Torsional Properties					Statical Moments	
	J	c_{w}	a	$W_{n o}$	S_{m}	a_{1}	Q_{w}
Shape	in. ${ }^{4}$	in. ${ }^{6}$	in.	in. ${ }^{2}$	in. ${ }^{4}$	in. ${ }^{3}$	in. ${ }^{3}$
W21×93	6.03	9,940	65.3	43.6	85.3	38.2	110
83	4.34	8,630	71.8	43.0	75.0	34.2	98.0
73	3.02	7,410	79.7	42.5	65.2	30.3	86.2
68	2.45	6,760	84.5	42.3	59.9	28.0	79.9
62	1.83	5,960	91.8	42.0	53.2	25.1	72.2
W21×57	1.77	3,190	68.3	33.4	35.6	20.9	64.3
50	1.14	2,570	76.4	33.1	28.9	17.2	55.0
44	0.77	2,110	84.2	32.8	24.0	14.5	47.7
W18×311	177	75,700	33.3	59.0	483	141	376
283	135	65,600	35.5	57.5	427	127	338
258	104	57,400	37.8	56.4	382	116	306
234	79.7	49,900	40.3	55.2	339	105	274
211	59.3	43,200	43.4	54.2	299	94.3	245
192	45.2	37,900	46.6	53.3	267	85.7	221
175	34.2	33,200	50.1	52.5	237	77.2	199
158	25.4	28,900	54.3	51.6	210	69.4	178
143	19.4	25,700	58.6	51.0	189	63.2	161
130	14.7	22,700	63.2	50.4	169	57.1	145
W18×119	10.6	20,300	70.4	50.4	151	50.6	131

C- and MC-Shap											
	Torsional Properties									Statical Moments	
	J	c_{w}	a	$W_{\text {no }}$	$W_{\text {r2 }}$	S_{w}	$S_{w 2}$	S_{w}	E_{0}	a_{1}	Q_{w}
Shape	in. ${ }^{4}$	in. ${ }^{6}$	in.	in. ${ }^{2}$	in. ${ }^{2}$	in. ${ }^{4}$	in. ${ }^{4}$	in. ${ }^{4}$	in.	in. ${ }^{3}$	in. ${ }^{3}$
MC18×58	2.81	1,070	31.4	24.4	9.08	21.4	18.4	9.21	1.05	19.7	48.0
51.9	2.03	986	35.5	23.5	9.53	19.8	16.6	8.27	1.10	19.7	44.0
45.8	1.45	897	40.0	22.5	10.1	18.2	14.6	7.29	1.16	19.7	39.9
42.7	1.23	852	42.4	22.0	10.4	17.4	13.5	6.75	1.19	19.7	37.9
MC13×50	2.98	558	22.0	17.4	7.49	14.9	12.2	6.09	1.21	14.0	30.6
40	1.57	463	27.6	16.1	8.12	12.7	9.48	4.60	1.31	14.0	25.8
35	1.14	413	30.6	15.3	8.57	11.5	7.86	4.00	1.38	14.0	23.4
31.8	0.94	380	32.4	14.8	8.84	10.7	6.90	3.37	1.43	14.0	21.9
MC12×50	3.24	411	18.1	14.5	6.55	12.9	10.3	5.14	1.16	13.3	28.4
45	2.35	374	20.3	13.9	6.78	11.9	9.08	4.56	1.20	13.3	26.1
40	1.70	336	22.6	13.3	7.05	10.9	7.83	3.92	1.25	13.3	23.9
35	1.25	297	24.8	12.6	7.36	9.83	6.47	3.24	1.30	13.3	21.7
31	1.01	268	26.2	12.0	7.71	8.89	5.20	2.86	1.37	13.3	21.6
MC12×10.6	0.06	11.7	22.5	6.00	2.22	0.95	0.82	0.41	0.379	2.61	6.36
MC10×41.1	2.27	270	17.5	12.5	5.95	9.59	7.44	3.72	1.26	9.86	19.8
33.6	1.21	224	21.9	11.6	6.35	8.23	5.77	2.83	1.35	9.86	17.0
28.5	0.79	194	25.2	10.9	6.70	7.26	4.52	2.19	1.42	9.86	15.2
MC10×25	0.64	125	22.5	9.40	5.75	5.39	3.38	1.77	1.22	7.66	13.0
22.	0.51	111	23.7	8.93	6.01	4.87	2.66	1.44	1.28	7.66	11.7

ϕ and derivatives for concentrated torque at midspan

Case3	$\theta^{\prime \prime} \times\left(\frac{G J}{T} \times a\right)$

$\overbrace{a 1-a)}^{\top}$	Torsional End Restraints				Concentrated torque at $\alpha=0.5$ on member with pinned ends
		ft End		ht End	
	Pinned	$\theta=\theta^{\prime \prime}=0$	Pinned	$\theta=\theta^{\prime \prime}=0$	

Case3 $_{\alpha=0.5} \quad \theta^{\prime \prime \prime} \times\left(\frac{G J}{T} \times a^{2}\right)$

Torsional End Restraints		$\begin{array}{l}\text { Concentrated torque at } \\ \alpha=0.5 \text { on member with } \\ \text { Left End } \\ \text { pinned ends }\end{array}$
Pinnt End	Right End	

Summary of first order differential equations

$$
\begin{align*}
& -E I_{x} v^{\prime \prime}=M_{x} \tag{1}\\
& E I_{y} u^{\prime \prime}=M_{y} \tag{2}\\
& G K_{T} \phi^{\prime}-E I_{W} \phi^{\prime \prime \prime}=M_{z} \tag{3}
\end{align*}
$$

NOTES:
(1) Three uncoupled differential equations
(2) Elastic material - first order force-deformation theory
(3) Small deflections only
(4) Assumes - no influence of one force on other deformations
(5) Equations of equilibrium in the undeformed state.

HOMEWORK \# 3

- Consider the 22 ft . long simply-supported W18x65 wide flange beam shown in Figure 1 below. It is subjected to a uniformly distributed load of $1 \mathrm{k} / \mathrm{ft}$ that is placed with an eccentricity of 3 in . with respect to the centroid (and shear center).
- At the mid-span and the end support cross-sections, calculate the magnitude and distribution of:
- Normal and shear stresses due to bending
- Shear stresses due to pure torsion
- Warping normal and shear stresses over the cross-section.
- Provide sketches and tables of the individual normal and shear stress distributions for each case.
- Superimpose the bending and torsional stress-states to determine the magnitude and location of maximum stresses.

HOMEWORK \# 2

Cross-section

Chapter 2. - Second-Order Differential Equations

- This chapter focuses on deriving second-order differential equations governing the behavior of elastic members
- 2.1 - First order differential equations
- 2.2 - Second-order differential equations

2.2 Second-Order Differential Equations

- Governing the behavior of structural members
- Elastic, Homogenous, and Isotropic
- Strains and deformations are really small - small deflection theory
- Equations of equilibrium in deformed state
- The deformations and internal forces are no longer independent. They must be combined to consider effects.
- Consider the behavior of a member subjected to combined axial forces and bending moments at the ends. No torsional forces are applied explicitly - because that is very rare for CE structures.

Member model and loading conditions

Fig. 2.30. End forces on a prismatic bar

- Member is initially straight and prismatic. It has a thin-walled open cross-section
- Member ends are pinned and prevented from translation.
- The forces are applied only at the member ends
- These consist only of axial and bending moment forces $P, M_{T X}, M_{T Y}, M_{B X}, M_{B Y}$
- Assume elastic behavior with small deflections
- Right-hand rule for positive moments and reactions and P assumed positive.

Member displacements (cross-sectional)

- Consider the middle line of thinwalled cross-section
- x and y are principal coordinates through centroid \mathbf{C}
- Q is any point on the middle line. It has coordinates (x, y).
- Shear center \mathbf{S} coordinates are ($\mathrm{x}_{0}, \mathrm{y}_{0}$)
- Shear center \mathbf{S} displacements are u, v, and ϕ

(a)

(b)

Fig. 2.31. Displacement of a point q in a cross section

Member displacements (cross-sectional)

- Displacements of Q are:
$u_{Q}=u+a \phi \sin \alpha$
$v_{Q}=v-\mathrm{a} \phi \cos \alpha$
where a is the distance from ${ }^{\prime}$
- But, $\sin \alpha=\left(y_{0}-y\right) / a$
$\cos \alpha=\left(\mathrm{x}_{0}-\mathrm{x}\right) / \mathrm{a}$
- Therefore, displacements of (
$u_{Q}=u+\phi\left(\mathrm{y}_{0}-\mathrm{y}\right)$
$v_{Q}=v-\phi\left(\mathrm{x}_{0}-\mathrm{x}\right)$
- Displacements of centroid C :
$u_{c}=u+\phi\left(\mathrm{y}_{0}\right)$
$v_{c}=v-\phi\left(\mathrm{x}_{0}\right)$

(b)

Fig. 2.31. Displacement of a point q in a cross section

Internal forces - second-order effects

- Consider the free body diagrams of the member in the deformed state.
- Look at the deformed state in the $x-z$ and $y-z$ planes in this Figure.
- The internal resisting moment at a distance z from the lower end are:
$M_{x}=-M_{B X}+R_{y} z+P v_{c}$
$M_{y}=-M_{B Y}+R_{x} z-P u_{c}$
- The end reactions R_{x} and R_{y} are:

$$
\begin{aligned}
& R_{X}=\left(M_{T Y}+M_{B Y}\right) / L \\
& R_{y}=\left(M_{T X}+M_{B X}\right) / L
\end{aligned}
$$

(a)

(b)

Fig. 2.32. Forces in the $x-z$ and the $y-z$ plane

Internal forces - second-order effects

- Therefore,

$$
\begin{aligned}
& M_{x}=-M_{B X}+\frac{z}{L}\left(M_{T X}+M_{B X}\right)+P\left(v-\phi x_{0}\right) \\
& M_{y}=-M_{B Y}+\frac{z}{L}\left(M_{T Y}+M_{B Y}\right)-P\left(u+\phi y_{0}\right)
\end{aligned}
$$

Internal forces in the deformed state

- In the deformed state, the cross-section is such that the principal coordinate systems are changed from $x-y-z$ to the $\xi-\eta-\zeta$ system

Fig. 2.33. Definition of the $\xi-\eta$ coordinate system

Internal forces in the deformed state

- The internal forces M_{x} and M_{y} must be transformed to these new $\xi-\eta-$ ζ axes
- Since the angle ϕ is small
- $M_{\xi}=M_{x}+\phi M_{y}$
- $M_{\eta}=M_{y}-\phi M_{x}$

$$
\begin{aligned}
& M_{x}=-M_{B X}+\frac{z}{L}\left(M_{T X}+M_{B X}\right)+P\left(v-\phi x_{0}\right) \\
& M_{y}=-M_{B Y}+\frac{z}{L}\left(M_{T Y}+M_{B Y}\right)-P\left(u+\phi y_{0}\right)
\end{aligned}
$$

$$
\therefore M_{\xi}=-M_{B X}+\frac{z}{L}\left(M_{T X}+M_{B X}\right)+P v-\phi\left(P x_{0}+M_{B Y}-\frac{z}{L}\left(M_{T Y}+M_{B Y}\right)\right)
$$

$$
\therefore M_{\eta}=-M_{B Y}+\frac{z}{L}\left(M_{T Y}+M_{B Y}\right)+P u+\phi\left(-P y_{0}+M_{B X}-\frac{z}{L}\left(M_{T X}+M_{B X}\right)\right)
$$

Twisting component of internal forces

- Twisting moments M_{ζ} are produced by the internal and external forces
- There are four components contributing to the total M_{ζ}
(1) Contribution from M_{x} and $M_{y}-M_{\zeta 1}$
(2) Contribution from axial force $\mathrm{P}-M_{\zeta 2}$
(3) Contribution from normal stress $\sigma-M_{\xi 3}$
(4) Contribution from end reactions R_{x} and $\mathrm{R}_{\mathrm{y}}-M_{\zeta 4}$
- The total twisting moment $M_{\zeta}=M_{\zeta 1}+M_{\zeta 2}+M_{\zeta 3}+M_{\zeta 4}$

Twisting component - 1 of 4

- Twisting moment due to $M_{x} \& M_{y}$
- $M_{\zeta 1}=M_{x} \sin (d u / d z)+M_{y} \sin (d v / d z)$
- Therefore, due to small angles, $M_{\zeta 1}=M_{x} d u / d z+M_{y} d v / d z$
- $M_{\zeta 1}=M_{x} u^{\prime}+M_{y} v^{\prime}$

Twisting component - 2 of 4

Fig. 2.35. Twisting due to components of M_{x}, M_{y}, and P

- The axial load P acts along the original vertical direction
- In the deformed state of the member, the longitudinal axis ζ is not vertical. Hence P will have components producing shears.
- These components will act at the centroid where P acts and will have values as shown above - assuming small angles

Twisting component - 2 of 4

- These shears will act at the centroid \mathbf{C}, which is eccentric with respect to the shear center \mathbf{S}. Therefore, they will produce secondary twisting.

Fig. 2.36. Twisting due to the components of P

- $M_{\zeta 2}=P\left(y_{0} d u / d z-x_{0} d v / d z\right)$
- Therefore, $M_{\zeta 2}=P\left(y_{0} u^{\prime}-x_{0} v^{\prime}\right)$

Twisting component - 3 of 4

- The end reactions (shears) R_{x} and R_{y} act at the shear center \mathbf{S} at the ends. But, along the member ends, the shear center will move by u, v, and ϕ.
- Hence, these reactions will also have a twisting effect produced by their eccentricity with respect to the shear center \mathbf{S}.
- $M_{\zeta 4}+R_{y} u+R_{x} v=0$
- Therefore,
- $M_{\zeta 4}=-\left(M_{T Y}+M_{B Y}\right) v / L-\left(M_{T X}+M_{B X}\right) u / L$

Fig. 2.38. Twisting due to the end shears

Twisting component - 4 of 4

- Wagner's effect or contribution - complicated.
- Two cross-sections that are $d \zeta$ apart will warp with respect to each other.
- The stress element $\sigma d A$ will become inclined by angle (a $d \phi / d \zeta$) with respect to $d \zeta$ axis.
- Twist produced by each stress element about \mathbf{S} is equal to

$$
\begin{aligned}
& d M_{\zeta 3}=-a(\sigma d A)\left(a \frac{d \phi}{d \zeta}\right) \\
& \therefore M_{\zeta 3}=-\frac{d \phi}{d \zeta} \int_{A} \sigma a^{2} d A
\end{aligned}
$$

Fig. 2.37. Twisting due to the differential warping of two adjacent cross sections

Twisting component - 4 of 4

$$
\begin{aligned}
& \text { Let, } \int_{A} \sigma a^{2} d A=\bar{K} \\
& \therefore M_{\zeta 3}=-\bar{K} \frac{d \phi}{d \zeta} \\
& \therefore M_{\zeta 3}=-\bar{K} \frac{d \phi}{d z} \quad \cdots \cdot . \text { for small angles }
\end{aligned}
$$

Twisting component - 4 of 4

$$
\begin{aligned}
& \text { Let, } \int_{A} \sigma a^{2} d A=\bar{K} \\
& \therefore M_{\zeta 3}=-\bar{K} \frac{d \phi}{d \zeta} \\
& \therefore M_{\zeta 3}=-\bar{K} \frac{d \phi}{d z} \quad \cdots \cdot \cdot \text { for small angles }
\end{aligned}
$$

Total Twisting Component

- $M_{\zeta}=M_{\zeta 1}+M_{\zeta 2}+M_{\zeta 3}+M_{\zeta 4}$

$$
\begin{aligned}
& M_{\zeta 1}=M_{x} u^{\prime}+M_{y} v^{\prime} \\
& M_{\zeta 2}=P\left(y_{0} u^{\prime}-x_{0} v^{\prime}\right) \\
& M_{\zeta 4}=-\left(M_{T Y}+M_{B Y}\right) v / L-\left(M_{T X}+M_{B X}\right) u / L \\
& M_{\zeta 3}=-\underline{K} \phi^{\prime}
\end{aligned}
$$

- Therefore,
$\underset{\phi^{\prime}}{M_{\zeta}}=M_{x} u^{\prime}+M_{y} v^{\prime}+P\left(y_{0} u^{\prime}-x_{0} v^{\prime}\right)-\left(M_{T Y}+M_{B Y}\right) v / L-\left(M_{T X}+M_{B X}\right) u / L-\underline{K}$
$M_{\xi} \stackrel{\text { While }}{=} M_{B X}+\frac{z}{L}\left(M_{T X}+M_{B X}\right)+P v-\phi\left(P x_{0}+M_{B Y}-\frac{z}{L}\left(M_{T Y}+M_{B Y}\right)\right)$
$M_{\eta}=-M_{B Y}+\frac{z}{L}\left(M_{T Y}+M_{B Y}\right)+P u+\phi\left(-P y_{0}+M_{B X}-\frac{z}{L}\left(M_{T X}+M_{B X}\right)\right)$

Total Twisting Component

- $M_{\zeta}=M_{\zeta 1}+M_{\zeta 2}+M_{\zeta 3}+M_{\zeta 4}$

$$
\begin{array}{ll}
M_{\zeta 1}=M_{x} u^{\prime}+M_{y} v^{\prime} \quad M_{\zeta 2}=P\left(y_{0} u^{\prime}-x_{0} v^{\prime}\right) \quad M_{\zeta 3}=-\underline{K} \phi^{\prime} \\
M_{\zeta 4}=-\left(M_{T Y}+M_{B Y}\right) v / L-\left(M_{T X}+M_{B X}\right) u / L &
\end{array}
$$

- Therefore,

$$
\begin{aligned}
& \therefore M_{\zeta}= \\
& \therefore M_{x} u^{\prime}+M_{y} v^{\prime}+P\left(y_{0} u^{\prime}-x_{0} v^{\prime}\right)-\left(M_{T Y}+M_{B Y}\right) \frac{v}{L}-\left(M_{T X}+M_{B X}\right) \frac{u}{L}-\bar{K} \phi^{\prime} \\
& \therefore\left(M_{x}+P y_{0}\right) u^{\prime}+\left(M_{y}-P x_{0}\right) v^{\prime}-\left(M_{T Y}+M_{B Y}\right) \frac{v}{L}-\left(M_{T X}+M_{B X}\right) \frac{u}{L}-\bar{K} \phi^{\prime} \\
& B u t, M_{x}=-M_{B X}+\frac{z}{L}\left(M_{B X}+M_{T X}\right)+P\left(v-\phi x_{0}\right) \\
& \text { and, } M_{y}=-M_{B Y}+\frac{z}{L}\left(M_{B Y}+M_{T Y}\right)-P\left(u+\phi y_{0}\right) \\
& \therefore M_{\zeta}= \\
& \quad\left(-M_{B X}-\frac{z}{L}\left(M_{B X}+M_{T X}\right)+P y_{0}\right) u^{\prime}+\left(-M_{B Y}-\frac{z}{L}\left(M_{B Y}+M_{T Y}\right)-P x_{0}\right) v^{\prime} \\
& \quad-\left(M_{T Y}+M_{B Y}\right) \frac{v}{L}-\left(M_{T X}+M_{B X}\right) \frac{u}{L}-\bar{K} \phi^{\prime}
\end{aligned}
$$

Internal moments about the $\xi-\eta-\zeta$ axes

- Thus, now we have the internal moments about the $\xi-\eta-\zeta$ axes for the deformed member cross-section.

$$
\begin{aligned}
& M_{\xi}=-M_{B X}+\frac{z}{L}\left(M_{T X}+M_{B X}\right)+P v-\phi\left(P x_{0}+M_{B Y}-\frac{z}{L}\left(M_{T Y}+M_{B Y}\right)\right) \\
& M_{\eta}=-M_{B Y}+\frac{z}{L}\left(M_{T Y}+M_{B Y}\right)-P u+\phi\left(-P y_{0}+M_{B X}-\frac{z}{L}\left(M_{T X}+M_{B X}\right)\right) \\
& M_{\zeta}=\left(-M_{B X}-\frac{z}{L}\left(M_{B X}+M_{T X}\right)+P y_{0}\right) u^{\prime}+\left(-M_{B Y}-\frac{z}{L}\left(M_{B Y}+M_{T Y}\right)-P x_{0}\right) v^{\prime} \\
& \quad-\left(M_{T Y}+M_{B Y}\right) \frac{v}{L}-\left(M_{T X}+M_{B X}\right) \frac{u}{L}-\bar{K} \phi^{\prime}
\end{aligned}
$$

Internal Moment - Deformation Relations

- The internal moments M_{ξ}, M_{η}, and M_{ζ} will still produce flexural bending about the centroidal principal axis and twisting about the shear center.
- The flexural bending about the principal axes will produce linearly varying longitudinal stresses.
- The torsional moment will produce longitudinal and shear stresses due to warping and pure torsion.
- The differential equations relating moments to deformations are still valid. Therefore,

$$
\begin{aligned}
& M_{\xi}=-E I_{\xi} v^{\prime \prime} \ldots \ldots \ldots \ldots \ldots \ldots \ldots\left(I_{\xi}=I_{x}\right) \\
& M_{\eta}=E I_{\eta} u^{\prime \prime} \ldots \ldots \ldots \ldots \ldots \ldots\left(I_{\eta}=I_{y}\right) \\
& M_{\zeta}=G K_{T} \phi^{\prime}-E I_{w} \phi^{\prime \prime \prime}
\end{aligned}
$$

Internal Moment - Deformation Relations

Therefore,

$$
\begin{aligned}
& \underline{M_{\xi}=-E I_{x} v^{\prime \prime}}=-M_{B X}+\frac{z}{L}\left(M_{T X}+M_{B X}\right)+P v-\phi\left(P x_{0}+M_{B Y}-\frac{z}{L}\left(M_{T Y}+M_{B Y}\right)\right) \\
& \frac{M_{\eta}=E I_{y} u^{\prime \prime}}{}=-M_{B Y}+\frac{z}{L}\left(M_{T Y}+M_{B Y}\right)-P u+\phi\left(-P y_{0}+M_{B X}-\frac{z}{L}\left(M_{T X}+M_{B X}\right)\right) \\
& \frac{M_{\zeta}=G K_{T} \phi^{\prime}-E I_{w} \phi^{\prime \prime \prime}}{}=\left(-M_{B X}-\frac{z}{L}\left(M_{B X}+M_{T X}\right)+P y_{0}\right) u^{\prime}+ \\
& \left(-M_{B Y}-\frac{z}{L}\left(M_{B Y}+M_{T Y}\right)-P x_{0}\right) v^{\prime}-\left(M_{T Y}+M_{B Y}\right) \frac{v}{L}-\left(M_{T X}+M_{B X}\right) \frac{u}{L}-\bar{K} \phi^{\prime}
\end{aligned}
$$

Second-Order Differential Equations

You end up with three coupled differential equations that relate the applied forces and moments to the deformations u, v, and ϕ.
Therefore,

$$
\begin{aligned}
& E I_{x} v^{\prime \prime}+P v-\phi\left(P x_{0}+M_{B Y}-\frac{z}{L}\left(M_{T Y}+M_{B Y}\right)\right)=M_{B X}-\frac{z}{L}\left(M_{T X}+M_{B X}\right) \\
& E I_{y} u^{\prime \prime}+P u-\phi\left(-P y_{0}+M_{B X}-\frac{z}{L}\left(M_{T X}+M_{B X}\right)=-M_{B Y}+\frac{z}{L}\left(M_{T Y}+M_{B Y}\right)\right.
\end{aligned}
$$

$$
E I_{w} \phi^{\prime \prime \prime}-\left(G K_{T}+\bar{K}\right) \phi^{\prime}+u^{\prime}\left(-M_{B X}-\frac{z}{L}\left(M_{B X}+M_{T X}\right)+P y_{0}\right)
$$

$$
-v^{\prime}\left(M_{B Y}+\frac{z}{L}\left(M_{B Y}+M_{T Y}\right)+P x_{0}\right)-\frac{v}{L}\left(M_{T Y}+M_{B Y}\right)-\frac{u}{L}\left(M_{T X}+M_{B X}\right)=0
$$

These differential equations can be used to investigate the elastic behavior and buckling of beams, columns, beam-columns and also complete frames - that will form a major part of this course.

Chapter 3. Structural Columns

- 3.1 Elastic Buckling of Columns
- 3.2 Elastic Buckling of Column Systems - Frames
- 3.3 Inelastic Buckling of Columns
- 3.4 Column Design Provisions (U.S. and Abroad)

3.1 Elastic Buckling of Columns

- Start out with the second-order differential equations derived in Chapter 2. Substitute $P=P$ and $M_{T Y}=M_{B Y}=M_{T X}=M_{B X}=0$
- Therefore, the second-order differential equations simplify to:

$$
\begin{array}{l|l|}
& E I_{x} v^{\prime \prime}+P v-\phi\left(P x_{0}\right)=0 \\
2 & E I_{y} u^{\prime \prime}+P u-\phi\left(-P y_{0}\right)=0 \\
E I_{w} \phi^{\prime \prime \prime}-\left(G K_{T}+\bar{K}\right) \phi^{\prime}+u^{\prime}\left(P y_{0}\right)-v^{\prime}\left(P x_{0}\right)=0
\end{array}
$$

- This is all great, but before we proceed any further we need to deal with Wagner's effect - which is a little complicated.

Wagner's effect for columns

$$
\bar{K} \phi^{\prime}=\int_{A} \sigma a^{2} \phi^{\prime} d A
$$

where,

$$
\sigma=-\frac{P}{A}+\frac{M_{\xi} y}{I_{x}}-\frac{M_{\eta} x}{I_{y}}+E W_{n} \phi^{\prime \prime}
$$

$$
M_{\xi}=P\left(v-\phi x_{0}\right)
$$

$$
M_{\eta}=-P\left(u+\phi y_{0}\right)
$$

$$
\therefore \bar{K} \phi^{\prime}=\int_{A}\left[-\frac{P}{A}+\frac{P\left(v-\phi x_{0}\right) y}{I_{x}}-\frac{-P\left(u+\phi y_{0}\right) x}{I_{y}}+E W_{n} \phi^{\prime \prime}\right] \phi^{\prime} a^{2} d A
$$

$$
\therefore \bar{K} \phi^{\prime}=\left[-\frac{P}{A}+\frac{P\left(v-\phi x_{0}\right) y}{I_{x}}-\frac{-P\left(u+\phi y_{0}\right) x}{I_{y}}+E W_{n} \phi^{\prime \prime}\right] \phi^{\prime} \int_{A} a^{2} d A
$$

Neglecting higher order terms; $\quad \bar{K} \phi^{\prime}=-\frac{P}{A} \phi^{\prime} \int_{A} a^{2} d A$

Wagner's effect for columns

$$
\begin{aligned}
& \text { But, } a^{2}=\left(x_{0}-x\right)^{2}+\left(y_{0}-y\right)^{2} \\
& \therefore \int_{A} a^{2} d A=\int_{A}\left(x_{0}-x\right)^{2}+\left(y_{0}-y\right)^{2} d A \\
& \therefore \int_{A} a^{2} d A=\int_{A}\left[x_{0}^{2}+y_{0}^{2}+x^{2}+y^{2}-2 x_{0} x-2 y_{0} y\right] d A \\
& \therefore \int_{A} a^{2} d A=\left[x_{0}^{2}+y_{0}^{2}\right] \int_{A} d A+\int_{A} x^{2} d A+\int_{A} y^{2} d A-2 x_{0} \int_{A} x d A-2 y_{0} \int_{A} y d A \\
& \therefore \int_{A} a^{2} d A=\left(x_{0}^{2}+y_{0}^{2}\right) A+I_{x}+I_{y} \\
& \text { Finally, } \\
& \therefore \bar{K} \phi^{\prime}=-\frac{P}{A}\left[\left(x_{0}^{2}+y_{0}^{2}\right) A+I_{x}+I_{y}\right] \phi^{\prime} \\
& \therefore \bar{K} \phi^{\prime}=-P\left[\left(x_{0}^{2}+y_{0}^{2}\right)+\frac{I_{x}+I_{y}}{A}\right] \phi^{\prime} \\
& \text { Let } \bar{r}_{0}^{2}=\left[\left(x_{0}^{2}+y_{0}^{2}\right)+\frac{I_{x}+I_{y}}{A}\right] \\
& \therefore \bar{K} \phi^{\prime}=-P \bar{r}_{0}^{2} \phi^{\prime}
\end{aligned}
$$

Second-order differential equations for columns

- Simplify to:

$$
\begin{array}{l|l|}
1 & E I_{x} v^{\prime \prime}+P v-\phi\left(P x_{0}\right)=0 \\
2 & E I_{y} u^{\prime \prime}+P u+\phi\left(P y_{0}\right)=0 \\
E I_{w} \phi^{\prime \prime \prime}+\left(P \bar{r}_{0}^{2}-G K_{T}\right) \phi^{\prime}+u^{\prime}\left(P y_{0}\right)-v^{\prime}\left(P x_{0}\right)=0
\end{array}
$$

- Where

$$
\bar{r}_{0}^{2}=x_{0}^{2}+y_{0}^{2}+\frac{I_{x}+I_{y}}{A}
$$

Column buckling - doubly symmetric section

- For a doubly symmetric section, the shear center is located at the centroid $\mathrm{x}_{0}=\mathrm{y}_{0}=0$. Therefore, the three equations become uncoupled

	$E I_{x} v^{\prime \prime}+P v=0$
2	$E I_{y} u^{\prime \prime}+P u=0$
3	$E I_{w} \phi^{\prime \prime \prime}+\left(P \bar{r}_{0}^{2}-G K_{T}\right) \phi^{\prime}=0$

- Take two derivatives of the first two equations and one more derivative of the third equation.

$$
\begin{array}{l|l|}
1 & E I_{x} v^{i v}+P v^{\prime \prime}=0 \\
2 & E I_{y} u^{i v}+P u^{\prime \prime}=0 \\
3 & E I_{w} \phi^{i v}+\left(P \bar{r}_{0}^{2}-G K_{T}\right) \phi^{\prime \prime}=0
\end{array}
$$

$$
\text { Let, } F_{v}^{2}=\frac{P}{E I_{x}} \quad F_{u}^{2}=\frac{P}{E I_{y}} \quad F_{\phi}^{2}=\frac{P \bar{r}_{0}^{2}-G K_{T}}{E I_{w}}
$$

Column buckling - doubly symmetric section

$$
\begin{array}{l|l}
1 & v^{i v}+F_{v}^{2} v^{\prime \prime}=0 \\
u^{i v}+F_{u}^{2} u^{\prime \prime}=0 \\
\phi^{i v}+F_{\phi}^{2} \phi^{\prime \prime}=0
\end{array}
$$

- All three equations are similar and of the fourth order. The solution will be of the form $C_{1} \sin \lambda z+C_{2} \cos \lambda z+C_{3} z+C_{4}$
- Need four boundary conditions to evaluate the constant $\mathrm{C}_{1} . . \mathrm{C}_{4}$
- For the simply supported case, the boundary conditions are: $u=u^{\prime \prime}=0 ; v=v^{\prime \prime}=0 ; \phi=\phi^{\prime \prime}=0$
- Lets solve one differential equation - the solution will be valid for all three.

Column buckling - doubly symmetric section

$$
v^{i v}+F_{v}^{2} v^{\prime \prime}=0
$$

Solution is

$$
\begin{aligned}
& v=C_{1} \sin F_{v} z+C_{2} \cos F_{v} z+C_{3} z+C_{4} \\
& \therefore v^{\prime \prime}=-C_{1} F_{v}^{2} \sin F_{v} z-C_{2} F_{v}^{2} \cos F_{v} z
\end{aligned}
$$

Boundary conditions :

$$
\left\lvert\, \begin{array}{lr}
v(0)=v^{\prime \prime}(0)=v(L)=v^{\prime \prime}(L)=0 & \\
& \\
C_{2}+C_{4}=0 & \cdots \cdots \cdot v(0)=0 \\
C_{2}=0 & \cdots \cdots \cdot v^{\prime \prime}(0)=0 \\
C_{1} \sin F_{v} L+C_{2} \cos F_{v} L+C_{3} L+C_{4} & \cdots \cdots \cdot v(L)=0 \\
-C_{1} F_{v}^{2} \sin F_{v} L-C_{2} F_{v}^{2} \cos F_{v} L & \cdots \cdots \cdot v^{\prime \prime}(L)=0
\end{array}\right.
$$

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
\sin F_{v} L & \cos F_{v} L & L & 1 \\
-F_{v}^{2} \sin F_{v} L & -F_{v}^{2} \cos F_{v} L & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3} \\
C_{4}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

The \mid coefficient matrix $\mid=0$
$\therefore F_{v}^{2} \sin F_{v} L=0$
$\therefore \sin F_{v} L=0$
$\therefore F_{v} L=n \pi$
$\therefore F_{v}=\sqrt{\frac{P}{E I_{x}}}=\frac{n \pi}{L}$
$\therefore P_{x}=\frac{n^{2} \pi^{2}}{L^{2}} E I_{x}$
Smallest value of $n=1:$
$\therefore P_{x}=\frac{\pi^{2} E I_{x}}{L^{2}}$

Column buckling - doubly symmetric section

Similarly,
$\sin F_{u} L=0$
$\therefore F_{u} L=n \pi$
$\therefore F_{u}=\sqrt{\frac{P}{E I_{y}}}=\frac{n \pi}{L}$
$\therefore P_{y}=\frac{n^{2} \pi^{2}}{L^{2}} E I_{y}$
Smallest value of $n=1:$
$P_{y}=\frac{\pi^{2} E I_{y}}{L^{2}}$

$$
\begin{aligned}
& \text { Similarly, } \\
& \sin F_{\phi} L=0 \\
& \therefore F_{\phi} L=n \pi \\
& \therefore F_{\phi}=\sqrt{\frac{P \bar{r}_{0}^{2}-G K_{T}}{E I_{w}}}=\frac{n \pi}{L} \\
& \therefore P_{\phi}=\left(\frac{n^{2} \pi^{2}}{L^{2}} E I_{w}+G K_{T}\right) \frac{1}{\bar{r}_{0}^{2}}
\end{aligned}
$$

Smallest value of $n=1$:

$$
P_{\phi}=\left(\frac{n^{2} \pi^{2}}{L^{2}} E I_{w}+G K_{T}\right) \frac{1}{\bar{r}_{0}^{2}}
$$

Summary $\{\begin{array}{l}P_{x}=\frac{L^{2}}{} \\ P_{y}=\frac{\pi^{2} E I_{y}}{L^{2}} \\ P_{\phi}=\left[\frac{\pi^{2} E I_{w}}{L^{2}}+G K_{T}\right] \frac{1}{\bar{r}_{0}^{2}}\end{array} \underbrace{2}_{3}$

Column buckling - doubly symmetric section

- Thus, for a doubly symmetric cross-section, there are three distinct buckling loads P_{x}, P_{y}, and P_{z}.
- The corresponding buckling modes are:

$$
v=C_{1} \sin (\pi z / L), u=C_{2} \sin (\pi z / L) \text {, and } \phi=C_{3} \sin (\pi z / L) \text {. }
$$

- These are, flexural buckling about the x and y axes and torsional buckling about the z axis.
- As you can see, the three buckling modes are uncoupled. You must compute all three buckling load values.
- The smallest of three buckling loads will govern the buckling of the column.

Column buckling - boundary conditions

Consider the case of fix-fix boundary conditions:
$v^{i v}+F_{v}^{2} v^{\prime \prime}=0$
Solution is
$v=C_{1} \sin F_{v} z+C_{2} \cos F_{v} z+C_{3} z+C_{4}$
$\therefore v^{\prime}=C_{1} F_{v} \cos F_{v} z-C_{2} F_{v} \sin F_{v} z+C_{3}$
Boundary conditions:
$v(0)=v^{\prime}(0)=v(L)=v^{\prime}(L)=0$
$\therefore C_{2}+C_{4}=0$
$\cdots v(0)=0$
$C_{1} F_{v}+C_{3}=0$
$\cdots v^{\prime}(0)=0$
$C_{1} \sin F_{v} L+C_{2} \cos F_{v} L+C_{3} L+C_{4}$
$\cdots v(L)=0$
$C_{1} F_{v} \cos F_{v} L-C_{2} F_{v} \sin F_{v} L+C_{3} \quad \cdots v^{\prime}(L)=0$
$\left[\begin{array}{cccc}0 & 1 & 0 & 1 \\ F_{v} & 0 & 1 & 0 \\ \sin F_{v} L & \cos F_{v} L & L & 1 \\ F_{v} \cos F_{v} L & -F_{v} \sin F_{v} L & 1 & 0\end{array}\right]\left\{\begin{array}{c}C_{1} \\ C_{2} \\ C_{3} \\ C_{4}\end{array}\right\}=\left\{\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right\}$

$$
\begin{aligned}
& \text { The } \mid \text { coefficient matrix } \mid=0 \\
& \therefore F_{v} L \sin F_{v} L-2 \cos F_{v} L+2=0 \\
& \therefore 2 \sin \frac{F_{v} L}{2}\left[F_{v} L \cos \frac{F_{v} L}{2}+2 \sin \frac{F_{v} L}{2}\right]=0 \\
& \therefore \frac{F_{v} L}{2}=n \pi \\
& \therefore F_{v}=\frac{2 n \pi}{L} \\
& \therefore P_{x}=\frac{4 n^{2} \pi^{2}}{L^{2}} E I_{x} \\
& \text { Smallest value of } n=1: \\
& \therefore P_{x}=\frac{\pi^{2} E I_{x}}{(0.5 L)^{2}}=\frac{\pi^{2} E I_{x}}{(K L)^{2}} \\
& \hline
\end{aligned}
$$

Column Boundary Conditions

- The critical buckling loads for columns with different boundary conditions can be expressed as:

$$
\begin{array}{ll}
P_{x}=\frac{\pi^{2} E I_{x}}{\left(K_{x} L\right)^{2}} \\
P_{y}=\frac{\pi^{2} E I_{y}}{\left(K_{y} L\right)^{2}} \\
P_{\phi}=\left[\frac{\pi^{2} E I_{w}}{\left(K_{z} L\right)^{2}}+G K_{T}\right] \frac{1}{\bar{r}_{0}^{2}} & 2 \\
3
\end{array}
$$

- Where, $\mathrm{K}_{\mathrm{x}}, \mathrm{K}_{\mathrm{y}}$, and K_{z} are functions of the boundary conditions:
- $K=1$ for simply supported boundary conditions
- $\mathrm{K}=0.5$ for fix-fix boundary conditions
- K=0.7 for fix-simple boundary conditions

Column buckling - example.

- Consider a wide flange column W27 x 84. The boundary conditions are:

$$
v=v^{\prime \prime}=u=u^{\prime}=\phi=\phi^{\prime}=0 \text { at } \mathrm{z}=0 \text {, and } v=v^{\prime \prime}=u=u^{\prime}=\phi=\phi^{\prime \prime}=0 \text { at } \mathrm{z}=\mathrm{L}
$$

- For flexural buckling about the x-axis - simply supported $-K_{x}=1.0$
- For flexural buckling about the y-axis - fixed at both ends $-\mathrm{K}_{\mathrm{y}}=0.5$
- For torsional buckling about the z-axis - pin-fix at two ends $-\mathrm{K}_{\mathrm{z}}=0.7$

$$
\begin{aligned}
& P_{x}=\frac{\pi^{2} E I_{x}}{\left(K_{x} L\right)^{2}}=\frac{\pi^{2} E A r_{x}^{2}}{\left(K_{x} L\right)^{2}}=\frac{\pi^{2} E A}{\left(K_{x} \frac{L}{r_{x}}\right)^{2}} \\
& P_{y}=\frac{\pi^{2} E I_{y}}{\left(K_{y} L\right)^{2}}=\frac{\pi^{2} E A r_{y}^{2}}{\left(K_{y} L\right)^{2}}=\frac{\pi^{2} E A}{\left(K_{y} \frac{L}{r_{x}}\right)^{2}}\left(\frac{r_{y}}{r_{x}}\right)^{2} \\
& P_{\phi}=\left[\frac{\pi^{2} E I_{w}}{\left(K_{z} L\right)^{2}}+G K_{T}\right] \frac{1}{\bar{r}_{0}^{2}}=\left[\frac{\pi^{2} E I_{w}}{\left(K_{z} \frac{L}{r_{x}}\right)^{2}}+G K_{T} r_{x}^{2}\right] \frac{A}{r_{x}^{2} \times\left(I_{x}+I_{y}\right)}
\end{aligned}
$$

Column buckling - example.

$$
\begin{aligned}
& \therefore \frac{P_{x}}{P_{Y}}=\frac{\pi^{2} E A}{\left(K_{x} \frac{L}{r_{x}}\right)^{2}} \times \frac{1}{A \sigma_{Y}}=\frac{\pi^{2} E}{\sigma_{Y}\left(K_{x} \frac{L}{r_{x}}\right)^{2}}=\frac{5823.066}{\left(\frac{L}{r_{x}}\right)^{2}} \\
& \frac{P_{y}}{P_{Y}}=\frac{\pi^{2} E A}{\left(K_{y} \frac{L}{r_{x}}\right)^{2}} \times \frac{\left(r_{y} / r_{x}\right)^{2}}{A \sigma_{Y}}=\frac{\pi^{2} E\left(r_{y} / r_{x}\right)^{2}}{\sigma_{Y}\left(K_{y} \frac{L}{r_{x}}\right)^{2}}=\frac{791.02}{\left(\frac{L}{r_{x}}\right)^{2}} \\
& \frac{P_{\phi}}{P_{Y}}=\left[\frac{\pi^{2} E I_{w}}{\left(K_{z} \frac{L}{r_{x}}\right)^{2}}+G K_{T} r_{x}^{2}\right] \frac{A}{r_{x}^{2} \times\left(I_{x}+I_{y}\right)} \times \frac{1}{A \sigma_{Y}} \\
& \therefore \frac{P_{\phi}}{P_{Y}}=\left[\frac{\pi^{2} E I_{w}}{\left(K_{z} \frac{L}{r_{x}}\right)^{2}}+G K_{T} r_{x}^{2} \frac{1}{r_{x}^{2} \times\left(I_{x}+I_{y}\right) \times \sigma_{Y}}\right. \\
& \therefore \frac{P_{\phi}}{P_{Y}}=\frac{578.26}{\left(\frac{L}{r_{x}}\right)^{2}}+0.2333
\end{aligned}
$$

Column buckling - example.

——Px - flexural buckling ——Py - flexural buckling ——Pz - torsional buckling

Column buckling - example.

- When L is such that $L / r_{x}<31$; torsional buckling will govern
- $r_{x}=10.69 \mathrm{in}$. Therefore, $L / r_{x}=31 \rightarrow L=338 \mathrm{in} .=28 \mathrm{ft}$.
- Typical column length $=10-15 \mathrm{ft}$. Therefore, typical $\mathrm{L} / \mathrm{r}_{\mathrm{x}}=11.2-16.8$
- Therefore elastic torsional buckling will govern.
- But, the predicted load is much greater than P_{Y}. Therefore, inelastic buckling will govern.
- Summary - Typically must calculate all three buckling load values to determine which one governs. However, for common steel buildings made using wide flange sections - the minor (y-axis) flexural buckling usually governs.
- In this problem, the torsional buckling governed because the end conditions for minor axis flexural buckling were fixed. This is very rarely achieved in common building construction.

Column Buckling - Singly Symmetric Columns

- Well, what if the column has only one axis of symmetry. Like the xaxis or the y-axis or so.
- As shown in this figure, the y - axis is the axis of symmetry.
- The shear center S will be located on this axis.
- Therefore $x_{0}=0$.
- The differential equations will simplify to:

$$
\begin{array}{l|l|}
1 & E I_{x} v^{\prime \prime}+P v=0 \\
2 & E I_{y} u^{\prime \prime}+P u+\phi\left(P y_{0}\right)=0 \\
3 & E I_{w} \phi^{\prime \prime \prime}+\left(P \bar{r}_{0}^{2}-G K_{T}\right) \phi^{\prime}+u^{\prime}\left(P y_{0}\right)=0 \\
\hline
\end{array}
$$

Column Buckling - Singly Symmetric Columns

- The first equation for flexural buckling about the x-axis (axis of non-symmetry) becomes uncoupled.
$E I_{x} v^{\prime \prime}+P v=0 \quad \cdots \cdots(1)$
$\therefore E I_{x} v^{i v}+P v^{\prime \prime}=0$
$\therefore v^{i v}+F_{v}^{2} v^{\prime \prime}=0$
where, $F_{v}{ }^{2}=\frac{P}{E I_{x}}$
$\therefore v=C_{1} \sin F_{v} z+C_{2} \cos F_{v} z+C_{3} z+C_{4}$
Boundary conditions
$\sin F_{v} L=0$
$\therefore P_{x}=\frac{\pi^{2} E I_{x}}{\left(K_{x} L_{x}\right)^{2}}$
Buckling mod $v=C_{1} \sin F_{v} z$
- Equations (2) and (3) are still coupled in terms of u and ϕ.

$$
\begin{array}{l|l|}
2 & E I_{y} u^{\prime \prime}+P u+\phi\left(P y_{0}\right)=0 \\
3 & E I_{w} \phi^{\prime \prime \prime}+\left(P \bar{r}_{0}^{2}-G K_{T}\right) \phi^{\prime}+u^{\prime}\left(P y_{0}\right)=0
\end{array}
$$

- These equations will be satisfied by the solutions of the form
- $u=C_{2} \sin (\pi z / L)$ and $\phi=C_{3} \sin (\pi z / L)$

Column Buckling - Singly Symmetric Columns

$E I_{y} u^{\prime \prime}+P u+\phi\left(P y_{0}\right)=0$
$E I_{w} \phi^{\prime \prime \prime}+\left(P \bar{r}_{0}^{2}-G K_{T}\right) \phi^{\prime}+u^{\prime}\left(P y_{0}\right)=0 \cdots \cdots \cdots \cdots(2)$
$\therefore E I_{y} u^{i v}+P u^{\prime \prime}+\phi^{\prime \prime}\left(P y_{0}\right)=0$
$E I_{w} \phi^{i v}+\left(P \bar{r}_{0}^{2}-G K_{T}\right) \phi^{\prime \prime}+u^{\prime \prime}\left(P y_{0}\right)=0$

Let, $\quad u=C_{2} \sin \frac{\pi z}{L} ; \quad \phi=C_{3} \sin \frac{\pi z}{L}$
Therefore, substituting these in equations 2 and 3

$$
\begin{aligned}
& E I_{y}\left(\frac{\pi}{L}\right)^{4} C_{2} \sin \frac{\pi z}{L}-P C_{2}\left(\frac{\pi}{L}\right)^{2} \sin \frac{\pi z}{L}-P y_{0}\left(\frac{\pi}{L}\right)^{2} C_{3} \sin \frac{\pi z}{L}=0 \\
& E I_{w}\left(\frac{\pi}{L}\right)^{4} C_{3} \sin \frac{\pi z}{L}-\left(P \bar{r}_{0}^{2}-G K_{T}\right)\left(\frac{\pi}{L}\right)^{2} C_{3} \sin \frac{\pi z}{L}-P y_{0}\left(\frac{\pi}{L}\right)^{2} C_{2} \sin \frac{\pi z}{L}=0
\end{aligned}
$$

Column Buckling - Singly Symmetric Columns

$$
\begin{aligned}
& \therefore\left[E I_{y}\left(\frac{\pi}{L}\right)^{2}-P\right] C_{2}-P y_{0} C_{3}=0 \\
& \text { and }\left[E I_{w}\left(\frac{\pi}{L}\right)^{2}-\left(P \bar{r}_{0}^{2}-G K_{T}\right)\right] C_{3}-P y_{0} C_{2}=0 \\
& \text { Let }, P_{y}=\frac{\pi^{2} E I_{y}}{L^{2}} \quad \text { and } \quad P_{\phi}=\left(\frac{\pi^{2} E I_{w}}{L^{2}}+G K_{T}\right) \frac{1}{\bar{r}_{0}^{2}} \\
& \therefore\left[\begin{array}{ll}
\left.P_{y}-P\right] C_{2}-P y_{0} C_{3}=0 \\
{\left[\begin{array}{ll}
\left.P_{\phi}-P\right] \bar{r}_{0}^{2} C_{3}-P & y_{0} C_{2}=0
\end{array}\right.} \\
\therefore\left[\begin{array}{cc}
P_{y}-P & -P y_{0} \\
-P y_{0} & \left(P_{\phi}-P\right) \bar{r}_{0}^{2}
\end{array}\right]\left\{\begin{array}{l}
C_{2} \\
C_{3}
\end{array}\right\}=\{0\} \\
\therefore\left|\begin{array}{ll}
P_{y}-P & -P y_{0} \\
-P & \left(y_{0}-P\right) \bar{r}_{0}^{2}
\end{array}\right|=0
\end{array}\right.
\end{aligned}
$$

Column Buckling - Singly Symmetric Columns

$$
\begin{aligned}
& \therefore\left(P_{y}-P\right)\left(P_{\phi}-P\right) \bar{r}_{0}^{2}-P^{2} y_{0}^{2}=0 \\
& \therefore\left[P_{y} P_{\phi}-P\left(P_{y}+P_{\phi}\right)+P^{2}\right] \bar{r}_{0}^{2}-P^{2} y_{0}^{2}=0 \\
& \therefore P^{2}\left(1-\frac{y_{0}^{2}}{\bar{r}_{0}^{2}}\right)-P\left(P_{y}+P_{\phi}\right)+P_{y} P_{\phi}=0 \\
& \therefore P=\frac{\left(P_{y}+P_{\phi}\right) \pm \sqrt{\left(P_{y}+P_{\phi}\right)^{2}-4 P_{y} P_{\phi}\left(1-\frac{y_{0}^{2}}{\bar{r}_{0}^{2}}\right)}}{2\left(1-\frac{y_{0}^{2}}{\bar{r}_{0}^{2}}\right)} \\
& \therefore P=\frac{\left(P_{y}+P_{\phi}\right) \pm \sqrt{\left(P_{y}+P_{\phi}\right)^{2}\left[1-\frac{4 P_{y} P_{\phi}\left(1-\frac{y_{0}^{2}}{\bar{r}_{0}^{2}}\right)}{\left(P_{y}+P_{\phi}\right)^{2}}\right]}}{2\left(1-\frac{y_{0}^{2}}{\bar{r}_{0}^{2}}\right)}
\end{aligned}
$$

$$
\therefore P=\frac{\left(P_{y}+P_{\phi}\right)}{2\left(1-\frac{y_{0}^{2}}{\bar{r}_{0}^{2}}\right)}\left[1 \pm \sqrt{1-\frac{4 P_{y} P_{\phi}\left(1-\frac{y_{0}^{2}}{\bar{r}_{0}^{2}}\right)}{\left(P_{y}+P_{\phi}\right)^{2}}}\right]
$$

Thus, there are two roots for P
Smaller value will govern

$$
\therefore P=P=\frac{\left(P_{y}+P_{\phi}\right)}{2\left(1-\frac{y_{0}^{2}}{\bar{r}_{0}^{2}}\right)}\left[1-\sqrt{1-\frac{4 P_{y} P_{\phi}\left(1-\frac{y_{0}^{2}}{\bar{r}_{0}^{2}}\right)}{\left(P_{y}+P_{\phi}\right)^{2}}}\right]
$$

Column Buckling - Singly Symmetric Columns

- The critical buckling load will the lowest of P_{x} and the two roots shown on the previous slide.
- If the flexural torsional buckling load govern, then the buckling mode will be $C_{2} \sin (\pi z / L) \times C_{3} \sin (\pi z / L)$
- This buckling mode will include both flexural and torsional deformations - hence flexural-torsional buckling mode.

Column Buckling - Asymmetric Section

- No axes of symmetry: Therefore, shear center $S\left(x_{0}, y_{0}\right)$ is such that neither x_{0} not y_{0} are zero.

$$
\begin{align*}
& E I_{x} v^{\prime \prime}+P v-\phi\left(P x_{0}\right)=0 \tag{1}\\
& E I_{y} u^{\prime \prime}+P u+\phi\left(P y_{0}\right)=0 \tag{2}\\
& E I_{w} \phi^{\prime \prime \prime}+\left(P \bar{r}_{0}^{2}-G K_{T}\right) \phi^{\prime}+u^{\prime}\left(P y_{0}\right)-v^{\prime}\left(P x_{0}\right)=0 \tag{3}
\end{align*}
$$

- For simply supported boundary conditions: ($u, u^{\prime \prime}, v, v^{\prime \prime}, \phi, \phi^{\prime \prime}=0$), the solutions to the differential equations can be assumed to be:
- $u=C_{1} \sin (\pi z / L)$
- $v=C_{2} \sin (\pi z / L)$
- $\phi=C_{3} \sin (\pi z / L)$
- These solutions will satisfy the boundary conditions noted above

Column Buckling - Asymmetric Section

- Substitute the solutions into the d.e. and assume that it satisfied too:

$$
\begin{aligned}
& E I_{x}\left\{-C_{1}\left(\frac{\pi}{L}\right)^{2} \sin \left(\frac{\pi z}{L}\right)\right\}+P\left\{C_{1} \sin \left(\frac{\pi z}{L}\right)\right\}-P x_{0}\left\{C_{3} \sin \left(\frac{\pi z}{L}\right)\right\}=0 \\
& E I_{y}\left\{-C_{2}\left(\frac{\pi}{L}\right)^{2} \sin \left(\frac{\pi z}{L}\right)\right\}+P\left\{C_{2} \sin \left(\frac{\pi z}{L}\right)\right\}+P y_{0}\left\{C_{3} \sin \left(\frac{\pi z}{L}\right)\right\}=0 \\
& E I_{w}\left\{-C_{3}\left(\frac{\pi}{L}\right)^{3} \cos \left(\frac{\pi z}{L}\right)\right\}+\left(P \bar{r}_{0}^{2}-G K_{T}\right)\left\{C_{3} \frac{\pi}{L} \cos \left(\frac{\pi z}{L}\right)\right\}+P y_{0}\left\{C_{1} \frac{\pi}{L} \cos \left(\frac{\pi z}{L}\right)\right\}-P x_{0}\left\{C_{2} \frac{\pi}{L} \cos \left(\frac{\pi z}{L}\right)\right\}=0
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
-\left(\frac{\pi}{L}\right)^{2} E I_{x}+P & 0 & -P x_{0} \\
0 & -\left(\frac{\pi}{L}\right)^{2} E I_{y}+P & P y_{0} \\
-P x_{0} & P y_{0} & -\left(\frac{\pi}{L}\right)^{2} E I_{w}+\left(P \bar{r}_{0}^{2}-G K_{T}\right)
\end{array}\right)\left[\begin{array}{c}
C_{1} \sin \left(\frac{\pi z}{L}\right) \\
C_{2} \sin \left(\frac{\pi z}{L}\right) \\
\frac{\pi}{L} C_{3} \cos \left(\frac{\pi z}{L}\right)
\end{array}\right]=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}
$$

Column Buckling - Asymmetric Section

$$
\left(\begin{array}{ccc}
-P_{x}+P & 0 & -P x_{0} \\
0 & -P_{y}+P & P y_{0} \\
-P x_{0} & P y_{0} & \left(-P_{\phi}+P\right) \bar{r}_{0}^{2}
\end{array}\right)\left[\begin{array}{c}
C_{1} \sin \left(\frac{\pi z}{L}\right) \\
C_{2} \sin \left(\frac{\pi z}{L}\right) \\
\frac{\pi}{L} C_{3} \cos \left(\frac{\pi z}{L}\right)
\end{array}\right]=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}
$$

where,

$$
P_{x}=\left(\frac{\pi}{L}\right)^{2} E I_{x} \quad P_{y}=\left(\frac{\pi}{L}\right)^{2} E I_{y} \quad P_{\phi}=\left(\frac{\pi^{2} E I_{w}}{L^{2}}+G K_{T}\right) \frac{1}{\bar{r}_{0}^{2}}
$$

- Either $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}=0$ (no buckling), or the determinant of the coefficient matrix $=0$ at buckling.
- Therefore, determinant of the coefficient matrix is:

$$
\left(P-P_{x}\right)\left(P-P_{y}\right)\left(P-P_{\phi}\right)-P^{2}\left(P-P_{x}\right)\left(\frac{y_{o}{ }^{2}}{\bar{r}_{o}^{2}}\right)-P^{2}\left(P-P_{y}\right)\left(\frac{x_{o}{ }^{2}}{\bar{r}_{o}^{2}}\right)=0
$$

Column Buckling - Asymmetric Section

$$
\left(P-P_{x}\right)\left(P-P_{y}\right)\left(P-P_{\phi}\right)-P^{2}\left(P-P_{x}\right)\left(\frac{y_{o}^{2}}{\frac{r_{o}}{-2}}\right)-P^{2}\left(P-P_{y}\right)\left(\frac{x_{0}^{2}}{\bar{r}_{o}^{2}}\right)=0
$$

- This is the equation for predicting buckling of a column with an asymmetric section.
- The equation is cubic in P. Hence, it can be solved to obtain three roots $\mathrm{P}_{\mathrm{cr} 1}, \mathrm{P}_{\mathrm{cr} 2}, \mathrm{P}_{\mathrm{cr} 3}$.
- The smallest of the three roots will govern the buckling of the column.
- The critical buckling load will always be smaller than P_{x}, P_{y}, and P_{ϕ}
- The buckling mode will always include all three deformations u, v, and ϕ. Hence, it will be a flexural-torsional buckling mode.
- For boundary conditions other than simply-supported, the corresponding $\mathrm{P}_{\mathrm{x}}, \mathrm{P}_{\mathrm{y}}$, and P_{ϕ} can be modified to include end condition effects $\mathrm{K}_{\mathrm{x}}, \mathrm{K}_{\mathrm{y}}$, and K_{ϕ}

Homework No. 4

See word file

- Problem No. 1
- Consider a column with doubly symmetric cross-section. The boundary conditions for flexural buckling are simply supported at one end and fixed at the other end.
- Solve the differential equation for flexural buckling for these boundary conditions and determine the eigenvalue (buckling load) and the eigenmode (buckling shape). Plot the eigenmode.
- How the eigenvalue compare with the effective length approach for predicting buckling?
- What is the relationship between the eigenmode and the effective length of the column (Refer textbook).
- Problem No. 2
- Consider an A992 steel W14 x 68 column cross-section. Develop the normalized buckling load (Pcr/PY) vs. slenderness ratio (L/rx) curves for the column crosssection. Assume that the boundary conditions are simply supported for buckling about the x, y, and z axes.
- Which buckling mode dominates for different column lengths?
- Is torsional buckling a possibility for practical columns of this length?
- Will elastic buckling occur for most practical lengths of this column?
- Problem No. 3
- Consider a C10 $\times 30$ column section. The length of the column is 15 ft . What is the buckling capacity of the column if it is simply supported for buckling about the y axis (of non-symmetry), pin-fix for flexure about the x-axis (of symmetry) and simply supported in torsion about the z-axis. Which buckling mode dominates?

Column Buckling - Inelastic

A long topic

Effects of geometric imperfection

$$
\begin{array}{ll}
E I_{x} v^{\prime \prime}+P v=0 & \text { Leads to bifurcation buckling of } \\
E I_{y} u^{\prime \prime}+P u=0 & \text { perfect doubly-symmetric columns }
\end{array}
$$

$$
\begin{aligned}
& M_{x}-P\left(v+v_{o}\right)=0 \\
& \therefore E I_{x} v^{\prime \prime}+P\left(v+v_{o}\right)=0 \\
& \therefore v^{\prime \prime}+F_{v}^{2}\left(v+v_{o}\right)=0 \\
& \therefore v^{\prime \prime}+F_{v}^{2} v=-F_{v}^{2} v_{o} \\
& \therefore v^{\prime \prime}+F_{v}^{2} v=-F_{v}^{2}\left(\delta_{o} \sin \frac{\pi z}{L}\right) \\
& \text { Solution }=v_{c}+v_{p} \\
& v_{c}=A \sin \left(F_{v} z\right)+B \cos \left(F_{v} z\right) \\
& v_{p}=C \sin \frac{\pi z}{L}+D \cos \frac{\pi z}{L}
\end{aligned}
$$

Effects of Geometric Imperfection

Solve for C and D first
$\therefore v_{p}^{\prime \prime}+F_{v}^{2} v_{p}=-F_{v}^{2} \delta_{o} \sin \frac{\pi z}{L}$
$\therefore-\left(\frac{\pi}{L}\right)^{2}\left[C \sin \frac{\pi z}{L}+D \cos \frac{\pi z}{L}\right]+F_{v}^{2}\left[C \sin \frac{\pi z}{L}+D \cos \frac{\pi z}{L}\right]+F_{v}^{2} \delta_{o} \sin \frac{\pi z}{L}=0$
$\therefore \sin \frac{\pi z}{L}\left[-C\left(\frac{\pi}{L}\right)^{2}+F_{v}^{2} C+F_{v}^{2} \delta_{o}\right]+\cos \frac{\pi z}{L}\left[-\left(\frac{\pi}{L}\right)^{2} D+F_{v}^{2} D\right]=0$
$\therefore-C\left(\frac{\pi}{L}\right)^{2}+F_{v}^{2} C+F_{v}^{2} \delta_{o}=0 \quad$ and $\left[-\left(\frac{\pi}{L}\right)^{2} D+F_{v}^{2} D\right]=0$
$\therefore C=\frac{F_{v}^{2} \delta_{o}}{\left(\frac{\pi}{L}\right)^{2}-F_{v}^{2}}$
and $\quad D=0$
\therefore Solution becomes
$v=A \sin \left(F_{v} z\right)+B \cos \left(F_{v} z\right)+\frac{F_{v}^{2} \delta_{o}}{\left(\frac{\pi}{L}\right)^{2}-F_{v}^{2}} \sin \frac{\pi z}{L}$

Geometric Imperfection

Solve for A and B
Boundary conditions $v(0)=v(L)=0$
$v(0)=B=0$
$v(L)=A \sin F_{v} L=0$
$\therefore A=0$
\therefore Solution becomes

$$
v=\frac{F_{v}^{2} \delta_{o}}{\left(\frac{\pi}{L}\right)^{2}-F_{v}^{2}} \sin \frac{\pi z}{L}
$$

$\therefore v=\frac{\frac{F_{v}^{2}}{\left(\frac{\pi}{L}\right)^{2}} \delta_{o}}{1-\frac{F_{v}^{2}}{\left(\frac{\pi}{L}\right)^{2}}} \sin \frac{\pi z}{L}=\frac{\frac{P}{P_{E}} \delta_{o}}{1-\frac{P}{P_{E}}} \sin \frac{\pi z}{L}$
$\therefore v=\frac{\frac{P}{P_{E}}}{1-\frac{P}{P_{E}}} \delta_{o} \sin \frac{\pi z}{L}$
\therefore Total Deflection
$=v+v_{o}=\frac{\frac{P}{P_{E}}}{1-\frac{P}{P_{E}}} \delta_{o} \sin \frac{\pi z}{L}+\delta_{o} \sin \frac{\pi z}{L}$
$=\left[\frac{\frac{P}{P_{E}}}{1-\frac{P}{P_{E}}}+1\right] \delta_{o} \sin \frac{\pi z}{L}=\frac{1}{1-\frac{P}{P_{E}}} \delta_{o} \sin \frac{\pi z}{L}$
$=A_{F} \delta_{o} \sin \frac{\pi z}{L}$
$A_{F}=$ amplification factor

Geometric Imperfection

$A_{F}=\frac{1}{1-\frac{P}{P_{E}}}=$ amplification factor
$M_{x}=P\left(v+v_{o}\right)$
$\therefore M_{x}=A_{F}\left(P \delta_{o} \sin \frac{\pi z}{L}\right)$
i.e., $M_{x}=A_{F} \times($ moment due to initial crooked $)$

Increases exponentially Limit A_{F} for design
Limit P / P_{E} for design
Value used in the code is 0.877
This will give $A_{F}=8.13$
Have to live with it.

Residual Stress Effects

Figure 6.5.1 Typical residual stress pattern on rolled shapes.

Figure 6.5.3 Typical residual stress distribution in welded shapes.

Residual Stress Effects

History of column inelastic buckling

- Euler developed column elastic buckling equations (buried in the million other things he did).
- Take a look at: http://en.wikipedia.org/wiki/EuleR
- An amazing mathematician
- In the 1750 s , I could not find the exact year.
- The elastica problem of column buckling indicates elastic buckling occurs with no increase in load.
- $\mathrm{dP} / \mathrm{dv}=0$

History of Column Inelastic Buckling

- Engesser extended the elastic column buckling theory in 1889.
- He assumed that inelastic buckling occurs with no increase in load, and the relation between stress and strain is defined by tangent modulus E_{t}

Fig. 4.21. Engesser's concept of inelastic column buckling

- Engesser's tangent modulus theory is easy to apply. It compares reasonably with experimental results.
- $\mathrm{P}_{\mathrm{T}}=\pi \mathrm{E}_{\mathrm{T}} \mathrm{l} /(\mathrm{KL})^{2}$

History of Column Inelastic Buckling

- In 1895, Jasinsky pointed out the problem with Engesser's theory.
- If $\mathrm{dP} / \mathrm{dv}=0$, then the $2^{\text {nd }}$ order moment $(P v)$ will produce incremental strains that will vary linearly and have a zero value at the centroid (neutral axis).
- The linear strain variation will have compressive and tensile values. The tangent modulus for the incremental compressive strain is equal to E_{t} and that for the tensile strain is E.

History of Column Inelastic Buckling

- In 1898, Engesser corrected his original theory by accounting for the different tangent modulus of the tensile increment.
- This is known as the reduced modulus or double modulus
- The assumptions are the same as before. That is, there is no increase in load as buckling occurs.
- The corrected theory is shown in the following slide

History of Column Inelastic Buckling

- The buckling load P_{R} produces critical stress $\sigma_{R}=P_{r} / A$
- During buckling, a small curvature $\mathrm{d} \phi$ is introduced
- The strain distribution is shown.
- The loaded side has $\mathrm{d} \varepsilon_{\mathrm{L}}$ and $\mathrm{d} \sigma_{\mathrm{L}}$
- The unloaded side has $\mathrm{d} \varepsilon_{\mathrm{U}}$ and $\mathrm{d} \sigma_{u}$

$$
\begin{aligned}
& d \varepsilon_{L}=\left(\bar{y}-y_{1}+y\right) d \phi \\
& d \varepsilon_{U}=\left(y-\bar{y}+y_{1}\right) d \phi \\
& \therefore d \sigma_{L}=E_{t}\left(\bar{y}-y_{1}+y\right) d \phi \\
& \therefore d \sigma_{U}=E\left(y-\bar{y}+y_{1}\right) d \phi
\end{aligned}
$$

Fig. 4.22. The reduced modulus conce

History of Column Inelastic Buckling

$\because d \phi=-v^{\prime \prime}$
$d \sigma_{L}=-E_{t}\left(\bar{y}-y_{1}+y\right) v^{\prime \prime}$
$d \sigma_{U}=-E\left(y-\bar{y}+y_{1}\right) v^{\prime \prime}$
But, the assumption is $d P=0$
$\therefore \int_{\bar{y}-y_{1}}^{\bar{y}} d \sigma_{U} d A-\int_{-(d-\bar{y})}^{\bar{y}-y_{1}} d \sigma_{L} d A=0$
$\therefore \int_{\bar{y}-y_{1}}^{\bar{y}} E\left(y-\bar{y}+y_{1}\right) d A-\int_{-(d-\bar{y})}^{\bar{y}-y_{1}} E_{t}\left(\bar{y}-y_{1}+y\right) d A=0$
$\therefore E S_{1}-E S_{t}=0$
where, $S_{1}=\int_{\bar{y}-y_{1}}^{\bar{y}}\left(y-\bar{y}+y_{1}\right) d A$
and $\quad S_{2}=\int_{-(d-\bar{y})}^{\bar{y}-y_{1}}\left(\bar{y}-y_{1}+y\right) d A$

History of Column Inelastic Buckling

- S_{1} and S_{2} are the statical moments of the areas to the left and right of the neutral axis.
- Note that the neutral axis does not coincide with the centroid any more.
- The location of the neutral axis is calculated using the equation derived $E S_{1}-E_{t} S_{2}=0$

$$
\begin{aligned}
& M=P v \\
& \therefore M=\int_{\bar{y}-y_{1}}^{\bar{y}} d \sigma_{U}\left(y-\bar{y}+y_{1}\right) d A-\int_{-(d-\bar{y})}^{\bar{y}-y_{1}} d \sigma_{L}\left(\bar{y}-y_{1}+y\right) d A \\
& \therefore M=P v=-v^{\prime \prime}\left(E I_{1}+E_{t} I_{2}\right) \\
& \text { where, } I_{1}=\int_{\bar{y}-y_{1}}^{\bar{y}}\left(y-\bar{y}+y_{1}\right)^{2} d A \\
& \text { and } I_{2}=\int_{-(d-\bar{y})}^{\bar{y}-v_{1}}\left(\bar{y}-y_{1}+y\right)^{2} d A
\end{aligned}
$$

History of Column Inelastic Buckling

$$
\begin{aligned}
& M=P v=-v^{\prime \prime}\left(E I_{1}+E_{t} I_{2}\right) \\
& \therefore P v+\left(E I_{1}+E_{t} I_{2}\right) v^{\prime \prime}=0 \\
& \therefore v^{\prime \prime}+\frac{P}{E I_{1}+E_{t} I_{2}} v=0 \\
& \therefore v^{\prime \prime}+F_{v}^{2} v=0
\end{aligned}
$$

$$
\text { where, } \quad F_{v}^{2}=\frac{P}{E I_{1}+E_{t} I_{2}}=\frac{P}{\bar{E} I_{x}}
$$

$$
\text { and } \bar{E}=E \frac{I_{1}}{I_{x}}+E_{t} \frac{I_{2}}{I_{x}}
$$

$$
P_{R}=\frac{\pi^{2} \bar{E} I_{x}}{(K L)^{2}}
$$

\underline{E} is the reduced or double modulus
P_{R} is the reduced modulus buckling load

History of Column Inelastic Buckling

- For 50 years, engineers were faced with the dilemma that the reduced modulus theory is correct, but the experimental data was closer to the tangent modulus theory. How to resolve?
- Shanley eventually resolved this dilemma in 1947. He conducted very careful experiments on small aluminum columns.
- He found that lateral deflection started very near the theoretical tangent modulus load and the load capacity increased with increasing lateral deflections.
- The column axial load capacity never reached the calculated reduced or double modulus load.
- Shanley developed a column model to explain the observed phenomenon

History of Column Inelastic Buckling

Fig. 4.23. Shanley's column model

History of Column Inelastic Buckling

$$
\begin{equation*}
v_{0}=\frac{\theta_{0} L}{2} \text { and } \theta_{0}=\frac{1}{2 d}\left(e_{1}+e_{2}\right) \tag{4.129}
\end{equation*}
$$

By combining these two equations we can eliminate θ_{0}, and thus

$$
\begin{equation*}
v_{0}=\frac{L}{4 d}\left(e_{1}+e_{2}\right) \tag{4.130}
\end{equation*}
$$

The external moment at the midheight of the column is

$$
\begin{equation*}
M_{e}=P v_{0}=\frac{P L}{4 d}\left(e_{1}+e_{2}\right) \tag{4.131}
\end{equation*}
$$

The forces in the two flanges due to buckling are

$$
\begin{equation*}
P_{1}=\frac{E_{1} e_{1} A}{2 d} \text { and } P_{2}=\frac{E_{2} e_{2} A}{2 d} \tag{4.132}
\end{equation*}
$$

The internal moment is then

$$
\begin{equation*}
M_{i}=\frac{d P_{1}}{2}+\frac{d P_{2}}{2}=\frac{A}{4}\left(E_{1} e_{1}+E_{2} e_{2}\right) \tag{4.133}
\end{equation*}
$$

With $M_{t}=M_{i}$ we get an expression for the axial load P, or

$$
\begin{equation*}
P=\frac{A d}{L}\left(\frac{E_{1} e_{1}+E_{2} e_{2}}{e_{1}+e_{2}}\right) \tag{4.134}
\end{equation*}
$$

History of Column Inelastic Buckling

In case the cell is elastic $E_{1}=E_{2}=E$, and so

$$
\begin{equation*}
P_{s}=\frac{A E d}{L} \tag{4.135}
\end{equation*}
$$

For the tangent modulus concept $E_{1}=E_{?}=E_{t}$, and so

$$
\begin{equation*}
P_{r}=\frac{A E_{t} d}{L} \tag{4.136}
\end{equation*}
$$

When we consider the elastic unloading of the "tension" flange, then $E_{1}=E_{t}$ and $E_{2}=E$, and thus

$$
\begin{equation*}
P=\frac{A d}{L}\left(\frac{E_{1} e_{1}+E_{2} e_{2}}{e_{1}+e_{2}}\right) \tag{4.137}
\end{equation*}
$$

Upon substitution of e_{1} from Eq. (4.130) and P_{T} from Eq. (4.136) and using the abbreviation

$$
\begin{equation*}
\tau=\frac{E_{t}}{E} \tag{4.138}
\end{equation*}
$$

we find that

$$
\begin{equation*}
P=P_{r}\left[1+\frac{L e_{2}}{4 d v_{0}}\left(\frac{1}{\tau}-1\right)\right] \tag{4.139}
\end{equation*}
$$

History of Column Inelastic Buckling

$$
\begin{equation*}
P=P_{T}\left[1+\frac{1}{\left(d / 2 v_{0}\right)+(1+\tau) /(1-\tau)}\right] \tag{4.143}
\end{equation*}
$$

$$
\begin{equation*}
P_{R}=P_{r}\left(1+\frac{1-\tau}{1+\tau}\right) \tag{4.146}
\end{equation*}
$$

Fig. 4.24. Post-buckling behavior in the inelastic range
2.3.3 INELASTIC COLUMNS: Stage III - Shanley's Contribution

- Shaniey (1947) conducted very careful tests on small aluminum columns. He found that:
- Lateral deflections (v) started very near the tangent modulus load P_{T}
- but, additional load was carried until unloading set in.
- The reduced modulus P_{R} could never be reached.
- Shanleys explanation:

$$
\begin{equation*}
\therefore \text { Mext }=P_{\times v_{0}}=P \times \theta_{0} \times \frac{L}{2} \tag{23}
\end{equation*}
$$

The moment Next produces strains $\&$ stresses in the deformat
cell
$\therefore \phi=$ curvature of cell $=\frac{2 \theta_{0}}{d}$
and $\phi=\frac{\varepsilon_{1}+\varepsilon_{2}}{d}$
$2 v_{0}=\frac{\varepsilon_{1}+\varepsilon_{2}}{2} \times \frac{1}{2}$
where $\varepsilon_{1} \equiv$ strain in compressed fiber $\varepsilon_{2} \equiv$ strain in tension flange

Now, $P_{1}=$ force in compression flange $=\frac{A}{2} \times E_{1} \times \varepsilon_{1}$
$P_{2}=$ force in tension flange $=\frac{A}{2} \times E_{2} \times \varepsilon_{2}$
$\therefore P_{1}-P_{2}=\frac{A}{2} \times\left\{E_{1} \varepsilon_{1}-E_{2} \varepsilon_{2}\right\}$
Mint $=\frac{P_{1}+P_{2}}{2} \times d=\frac{A d}{4} \times\left\{E_{1} \varepsilon_{1}+E_{2} \varepsilon_{2}\right\}$
But $M_{\text {ext }}=M_{\text {int }}$

$$
\begin{align*}
& P \times \theta_{0} \times \frac{L}{2}=\frac{A d}{4} \times\left\{E_{1} \varepsilon_{1}+E_{2} \varepsilon_{2}\right\} \\
& P \times \frac{\left(\varepsilon_{1}+\varepsilon_{2}\right)}{Z} \times \frac{L}{Z}=\frac{A d}{\not Z} \times\left\{E_{1} \varepsilon_{1}+E_{2} \varepsilon_{2}\right\} \\
& P=\frac{A d}{L} \times\left\{\frac{E_{1} \varepsilon_{1}+E_{2} \varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}}\right\} \tag{27}
\end{align*}
$$

\therefore if the cell is elastic: $E_{1}=E_{2}=E$

$$
P_{E}=\frac{A d}{L} \times E
$$

\therefore if the cell is inelastic with $E_{1}=E_{2}=E_{t}$
then $P_{T}=\frac{A d}{L} \times E_{t}$
\& if $E_{1}=E_{t}$ and $E_{2}=E$
then $P=\frac{A d}{L} \times\left\{\frac{E_{t} \varepsilon_{1}+E \varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}}\right\}$

$$
\left.\begin{array}{rl}
& =\frac{A d}{L} \times\left\{E_{t}+\left(E-E_{t}\right) \times \frac{\varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}}\right\} \\
\therefore P & =\frac{A d}{L} \times E_{t}\left\{1+\left(\frac{1}{\tau}-1\right) \times \frac{\varepsilon_{2}}{4 \frac{v_{0}}{L}}\right\} \\
\therefore P & =P_{T}\left\{1+\left(\frac{1}{\tau}-1\right) \times \frac{L \varepsilon_{2}}{4 v_{0}}\right\}
\end{array}\right\} \begin{aligned}
& \tau=\frac{E_{t}}{E} \tag{29}\\
& \varepsilon_{1}+\varepsilon_{2}=\frac{4 v_{0}}{L}
\end{aligned}
$$

Additionally:

$$
\begin{aligned}
P & =P_{T}+P_{1}-P_{2} \\
& =\frac{A d}{L} E_{t}+\frac{A}{2} \times\left\{E_{t} \varepsilon_{1}-E \varepsilon_{2}\right\} \\
& =\frac{A d}{L} E_{t}+\frac{A}{2} \times E_{t}\left(\varepsilon_{1}+\varepsilon_{2}\right)-\frac{A}{2}\left(E+E_{t}\right) \varepsilon_{2} \\
P & =\frac{A d}{L} E_{t} \times\left\{1+\frac{2 v_{0}}{d}-\frac{L \varepsilon_{2}}{2 d}\left(\frac{1}{\tau}+1\right)\right\} \\
P & =P_{T}\left\{1+\frac{2 v_{0}}{d}-\frac{L \varepsilon_{2}}{2 d}\left(\frac{1}{2}+1\right)\right\} \ldots(30)
\end{aligned}
$$

Using equations $(29) \&(30)$ to eliminate ε_{2}

$$
P=P_{T} \times\left\{1+\frac{1}{\frac{d}{2 v_{0}}+(1+\tau)(1-2)}\right\} \rightarrow(31)
$$

For example;

$$
\begin{equation*}
\text { if } \tau=0.5 \quad \text { then } P=P_{T} \times\left\{1+\frac{1}{\frac{a}{2 v_{0}}+3}\right\} \tag{32}
\end{equation*}
$$

The plot of $\frac{P}{P_{T}}$ vs. $\frac{V_{0}}{d} \longrightarrow$ shown below

- Lateral deflections occur when P_{T} is reached
- buckling occurs with increasing loads
- curve approaches P_{R} as $\frac{v_{0}}{d} \rightarrow \infty$
- If τ decreases with strain $\rightarrow P_{R}$ will never be reached and the dotted curve will be followed Then $P_{T} \leq P_{\max }<P_{R}$

Column Inelastic Buckling

- Three different theories
- Tangent modulus
- Reduced modulus
- Shanley model

Elastic buckling analysis

Tangent modulus theory

- Assumes that the column buckles at the tangent modulus load such that there is an increase in $\Delta \mathrm{P}$ (axial force) and $\Delta \mathrm{M}$ (moment).
- The axial strain increases everywhere and there is no strain reversal.

Strain and stress state just before buckling

Strain and stress state just after buckling

σ_{T}
$\Delta \sigma_{\mathrm{T}}=\mathrm{E}_{\mathrm{T}} \Delta \varepsilon_{\mathrm{T}}$

Curvature $=\phi=$ slope of strain diagram
$\therefore \phi=\frac{\Delta \varepsilon_{T}}{h}$
$\Delta \varepsilon_{T}=\phi\left(\frac{h}{2}+y\right) \quad$ where $y=$ dis tan ce from centroid
$\Delta \sigma_{T}=\phi\left(\frac{h}{2}+y\right) \bullet E_{T}$

Tangent modulus theory

- Deriving the equation of equilibrium
- The equation $M_{x}-P_{T} v=0$ becomes $-E_{T} I_{x} v$ " - $P_{T} v=0$
- Solution is $P_{T}=\pi^{2} E_{T} I_{x} / L^{2}$

Example - Aluminum columns

- Consider an aluminum column with Ramberg-Osgood stressstrain curve

$$
\begin{aligned}
& \varepsilon=\frac{\sigma}{E}+0.002\left(\frac{\sigma}{\sigma_{0.2}}\right)^{n} \\
& \therefore \frac{\partial \varepsilon}{\partial \sigma}=\frac{1}{E}+\frac{0.002}{\sigma_{0.2}^{n}} n \sigma^{n-1} \\
& \therefore \frac{\partial \varepsilon}{\partial \sigma}=\frac{1+\frac{0.002}{\sigma_{0.2}^{n}} n E \sigma^{n-1}}{E} \\
& \therefore \frac{\partial \varepsilon}{\partial \sigma}=\frac{1+\frac{0.002}{\sigma_{0.2}} n E\left(\frac{\sigma}{\sigma_{0.2}}\right)^{n-1}}{E} \\
& \therefore \frac{\partial \sigma}{\partial \varepsilon}=\frac{E}{1+\frac{0.002}{\sigma_{0.2}} n E\left(\frac{\sigma}{\sigma_{0.2}}\right)^{n-1}}=E_{T}
\end{aligned}
$$

Tangent Modulus Buckling

Tangent Modulus Buckling

Residual Stress Effects

- Consider a rectangular section with a simple residual stress distribution
- Assume that the steel material has elastic-plastic stress-strain $\sigma-\varepsilon$ curve.
- Assume simply supported end conditions
- Assume triangular distribution for residual stresses

Residual Stress Effects

- One major constrain on residual stresses is that they must be such that

$$
\therefore \int_{-b / 2}^{0}\left(-0.5 \sigma_{y}+\frac{2 \sigma_{y}}{b} x\right) d \times d x+\int_{0}^{b / 2}\left(+0.5 \sigma_{y}-\frac{2 \sigma_{y}}{b} x\right) d \times d x
$$

$$
=-0.5 \sigma_{y} d b / 2+0.5 \sigma_{y} d b / 2+\frac{2 d \sigma_{y}}{b}\left(\frac{b^{2}}{8}\right)-\frac{2 d \sigma_{y}}{b}\left(\frac{b^{2}}{8}\right)
$$

$$
=0
$$

- Residual stresses are produced by uneven cooling but no load is present

Residual Stress Effects

- Response will be such that elastic behavior when
$\sigma<0.5 \sigma_{y}$
$P_{x}=\frac{\pi^{2} E I_{x}}{L^{2}} \quad$ and $\quad P_{y}=\frac{\pi^{2} E I_{y}}{L^{2}}$
Yielding occurs when
$\sigma=0.5 \sigma_{y} \quad$ i.e., $P=0.5 P_{Y}$
Inelastic buckling will occur after $\sigma>0.5 \sigma_{y}$

Residual Stress Effects

Total axial force corresponding to the yielded sec tion
$\sigma_{Y}(b-2 \alpha b) d+\left(\frac{\sigma_{Y}+\sigma_{Y}(1-2 \alpha)}{2}\right) \alpha b d \times 2$
$=\sigma_{Y}(1-2 \alpha) b d+\sigma_{Y}(2-2 \alpha) \alpha b d$
$=\sigma_{Y} b d-2 \alpha b d \sigma_{Y}+2 \sigma_{Y} \alpha b d-2 \alpha^{2} b d \sigma_{Y}$
$=\sigma_{Y} b d\left(1-2 \alpha^{2}\right)=P_{Y}\left(1-2 \alpha^{2}\right)$
\therefore If inelastic buckling were to occur at this load

$$
P_{c r}=P_{Y}\left(1-2 \alpha^{2}\right)
$$

$\therefore \alpha=\sqrt{\frac{1}{2}\left(1-\frac{P_{c r}}{P_{Y}}\right)}$

If inelastic buckling occurs about x - axis

$$
\begin{aligned}
& P_{c r}=P_{T x}=\frac{\pi^{2} E}{L^{2}}(2 \alpha b) \frac{d^{3}}{12} \\
& \therefore P_{T x}=\frac{\pi^{2} E I_{x}}{L^{2}} 2 \alpha
\end{aligned}
$$

$$
\therefore P_{T x}=P_{x} \times 2 \times \sqrt{\frac{1}{2}\left(1-\frac{P_{c r}}{P_{Y}}\right)}
$$

$\therefore P_{T x}=P_{x} \times 2 \times \sqrt{\frac{1}{2}\left(1-\frac{P_{T x}}{P_{Y}}\right)} \quad \because P_{c r}=P_{T x}$
$\therefore \frac{P_{T x}}{P_{Y}}=\frac{P_{x}}{P_{Y}} \times 2 \times \sqrt{\frac{1}{2}\left(1-\frac{P_{T x}}{P_{Y}}\right)}$
Let, $\frac{P_{x}}{P_{Y}}=\frac{1}{\lambda_{x}^{2}}=\pi^{2} \frac{E}{\sigma_{Y}}\left(\frac{r_{x}}{K_{x} L_{x}}\right)^{2}$
$\therefore \frac{P_{T x}}{P_{Y}}=\frac{1}{\lambda_{x}^{2}} \times 2 \times \sqrt{\frac{1}{2}\left(1-\frac{P_{T x}}{P_{Y}}\right)}$
$\therefore \lambda_{x}^{2}=\sqrt{2\left(1-\frac{P_{T x}}{P_{Y}}\right)} / \frac{P_{T_{x}}}{P_{Y}}$

If inelastic buckling occurs about y - axis

$$
\begin{aligned}
& P_{c r}=P_{T y}=\frac{\pi^{2} E}{L^{2}}(2 \alpha b)^{3} \frac{d}{12} \\
& \therefore P_{T y}=\frac{\pi^{2} E I_{y}}{L^{2}}(2 \alpha)^{3} \\
& \therefore P_{T y}=P_{y} \times\left[2 \sqrt{\frac{1}{2}\left(1-\frac{P_{c r}}{P_{Y}}\right.}\right]^{3} \\
& \therefore P_{T y}=P_{y} \times\left[\sqrt{2\left(1-\frac{P_{T y}}{P_{Y}}\right)}\right]^{3} \quad \because P_{c r}=P_{T y} \\
& \therefore \frac{P_{T y}}{P_{Y}}=\frac{P_{y}}{P_{Y}} \times\left[\sqrt{2\left(1-\frac{P_{T y}}{P_{Y}}\right)}\right]^{3} \quad \text { Let }, \frac{P_{y}}{P_{Y}}=\frac{1}{\lambda_{y}^{2}}=\pi^{2} \frac{E}{\sigma_{Y}}\left(\frac{r_{y}}{K_{y} L_{y}}\right)^{2} \\
& \left.\therefore \frac{P_{T y}}{P_{Y}}=\frac{1}{\lambda_{y}^{2}} \times\left[\sqrt{2\left(1-\frac{P_{T y}}{P_{Y}}\right.}\right)\right]^{3} \\
& \therefore \lambda_{y}^{2}=\left[\sqrt{\left.\left.2\left(1-\frac{P_{T y}}{P_{Y}}\right)\right]\right]^{3}} / \frac{P_{T y}}{P_{Y}}\right.
\end{aligned}
$$

Residual Stress Effects

$\mathrm{P} / \mathrm{P}_{\mathrm{r}}$	λ_{x}	λ_{y}
0.200	2.236	2.236
0.250	2.000	2.000
0.300	1.826	1.826
0.350	1.690	1.690
0.400	1.581	1.581
0.450	1.491	1.491
0.500	1.414	1.414
0.550	1.313	1.246
0.600	1.221	1.092
0.650	1.135	0.949
0.700	1.052	0.815
0.750	0.971	0.687
0.800	0.889	0.562
0.850	0.803	0.440
0.900	0.705	0.315
0.950	0.577	0.182
0.995	0.317	0.032

Fig. 4.34. Tangent modulas buckling curves for strong and weak axis backling of wide-flange colamns

Tangent modulus buckling - Numerical

Tangent Modulus Buckling - Numerical

Tangent modulus buckling - numerical

Section Dimension

b	12
d	4
σ_{y}	50
No. of fibers	20

fiber no.	$\mathrm{A}_{\text {fib }}$	$\mathrm{X}_{\text {fib }}$	$\mathrm{y}_{\text {fib }}$	$\sigma_{\text {r-fib }}$	$\varepsilon_{\text {r-fib }}$	$\mathrm{I} \mathrm{f}_{\text {fib }}$	$\mathrm{I} \mathrm{y}_{\text {fib }}$
1	2.4	-5.7	0	-22.5	$-7.759 \mathrm{E}-04$	3.2	78.05
2	2.4	-5.1	0	-17.5	$-6.034 \mathrm{E}-04$	3.2	62.50
3	2.4	-4.5	0	-12.5	$-4.310 \mathrm{E}-04$	3.2	48.67
4	2.4	-3.9	0	-7.5	$-2.586 \mathrm{E}-04$	3.2	36.58
5	2.4	-3.3	0	-2.5	$-8.621 \mathrm{E}-05$	3.2	26.21
6	2.4	-2.7	0	2.5	$8.621 \mathrm{E}-05$	3.2	17.57
7	2.4	-2.1	0	7.5	$2.586 \mathrm{E}-04$	3.2	10.66
8	2.4	-1.5	0	12.5	$4.310 \mathrm{E}-04$	3.2	5.47
9	2.4	-0.9	0	17.5	$6.034 \mathrm{E}-04$	3.2	2.02
10	2.4	-0.3	0	22.5	$7.759 \mathrm{E}-04$	3.2	0.29
11	2.4	0.3	0	22.5	$7.759 \mathrm{E}-04$	3.2	0.29
12	2.4	0.9	0	17.5	$6.034 \mathrm{E}-04$	3.2	2.02
13	2.4	1.5	0	12.5	$4.310 \mathrm{E}-04$	3.2	5.47
14	2.4	2.1	0	7.5	$2.586 \mathrm{E}-04$	3.2	10.66
15	2.4	2.7	0	2.5	$8.621 \mathrm{E}-05$	3.2	17.57
16	2.4	3.3	0	-2.5	$-8.621 \mathrm{E}-05$	3.2	26.21
17	2.4	3.9	0	-7.5	$-2.586 \mathrm{E}-04$	3.2	36.58
18	2.4	4.5	0	-12.5	$-4.310 \mathrm{E}-04$	3.2	48.67
19	2.4	5.1	0	-17.5	$-6.034 \mathrm{E}-04$	3.2	62.50
20	2.4	5.7	0	-22.5	$-7.759 \mathrm{E}-04$	3.2	78.05

Tangent Modulus Buckling - numerical

Strain Increment

$\Delta \varepsilon$	Fiber no.	$\varepsilon_{\text {tot }}$	$\sigma_{\text {fib }}$	$\mathrm{E}_{\text {fib }}$	$\mathrm{EI}_{\text {Tx-fib }}$	$\mathrm{EI}_{\text {Ty-fib }}$	$\mathrm{P}_{\text {fib }}$
-0.0003	1	-1.076E-03	-31.2	29000	92800	$2.26 \mathrm{E}+06$	-74.88
	2	-9.034E-04	-26.2	29000	92800	$1.81 \mathrm{E}+06$	-62.88
	3	-7.310E-04	-21.2	29000	92800	$1.41 \mathrm{E}+06$	-50.88
	4	-5.586E-04	-16.2	29000	92800	$1.06 \mathrm{E}+06$	-38.88
	5	-3.862E-04	-11.2	29000	92800	$7.60 \mathrm{E}+05$	-26.88
	6	-2.138E-04	-6.2	29000	92800	$5.09 \mathrm{E}+05$	-14.88
	7	-4.138E-05	-1.2	29000	92800	$3.09 \mathrm{E}+05$	-2.88
	8	$1.310 \mathrm{E}-04$	3.8	29000	92800	$1.59 \mathrm{E}+05$	9.12
	9	$3.034 \mathrm{E}-04$	8.8	29000	92800	5.85E+04	21.12
	10	$4.759 \mathrm{E}-04$	13.8	29000	92800	$8.35 \mathrm{E}+03$	33.12
	11	$4.759 \mathrm{E}-04$	13.8	29000	92800	$8.35 \mathrm{E}+03$	33.12
	12	$3.034 \mathrm{E}-04$	8.8	29000	92800	$5.85 \mathrm{E}+04$	21.12
	13	$1.310 \mathrm{E}-04$	3.8	29000	92800	$1.59 \mathrm{E}+05$	9.12
	14	-4.138E-05	-1.2	29000	92800	$3.09 \mathrm{E}+05$	-2.88
	15	-2.138E-04	-6.2	29000	92800	$5.09 \mathrm{E}+05$	-14.88
	16	-3.862E-04	-11.2	29000	92800	$7.60 \mathrm{E}+05$	-26.88
	17	-5.586E-04	-16.2	29000	92800	$1.06 \mathrm{E}+06$	-38.88
	18	-7.310E-04	-21.2	29000	92800	$1.41 \mathrm{E}+06$	-50.88
	19	-9.034E-04	-26.2	29000	92800	$1.81 \mathrm{E}+06$	-62.88
	20	-1.076E-03	-31.2	29000	92800	$2.26 \mathrm{E}+06$	-74.88

Tangent Modulus Buckling－Numerical

$\Delta \varepsilon$	P	$\mathrm{EI}_{\text {TX }}$	$\mathrm{EI}_{\text {Ty }}$	KL ${ }_{\text {x－cr }}$	$\mathrm{KL}_{\mathrm{y} \text {－cr }}$	σ_{T} / σ_{Y}	（KL／r）${ }_{\text {x }}$	（KL／r）${ }_{\text {y }}$
－0．0003	－417．6	1856000	16704000	209.4395102	628．318530才	0.174	181.3799364	4181．379936
－0．0004	－556．8	1856000	16704000	181.3799364	544.1398093	0.232	157.0796327	157.079632
－0．0005	－696	1856000	16704000	162．23114才	486．6934411	0.29	140.4962946	140.496294
－0．0006	－835．2	1856000	16704000	148.0960979	9444．2882938	0.348	128.254983	128.25498
－0．0007	－974．4	1856000	16704000	137.1103442	2411．331032\＄	0.406	118.7410412	118.741041
－0．0008	－1113．6	1856000	16704000	128．254983	3884.764949	0.464	111.0720735	111.072073
－0．0009	－1252．8	1856000	16704000	120.919957ϕ	\＄ 362.759872 \＄	0.522	104.7197551	104.719755
－0．001	－1384．8	1670400	12177216	109．11051	294.5983771	0.577	94.49247352	85.0432261
－0．0011	－1510．08	1670400	12177216	104.4864889	282．113519 ${ }^{\text {2 }}$	0.6292	90.48795371	81.4391583
－0．0012	－1624．32	1484800	8552448	94.98347542	227.960341	0.6768	82.25810265	56.8064821
－0．0013	－1734．72	1299200	5729472	85.97519823	3 180．5479163	0.7228	74.45670576	52.1196940
－0．0014	－1832．16	1299200	5729472	83.65775001	175．68127\＄	0.7634	72.44973673	50.7148157
－0．0015	－1924．8	1113600	3608064	75.56517263	1 136．0173107	0.802	65.44135914	39.2648154
－0．0016	－2008．32	1113600	3608064	$73.9772234 ¢$	\＄133．159002 2	20．8368	64.06615482	38.4396928
－0．0017	－2083．2	928000	2088000	$66.3068470 \$$	\＄99．4602705\＄	0.868	57.423414	28.71170
－0．0018	－2152．8	928000	2088000	65.2261910 ¢	¢ 97．8392866ß	0.897	56.48753847	28.2437692
－0．0019	－2209．92	742400	1069056	57.5811823β	及 69．097418\＄	0.9208	49.86676668	19.9467066
－0．002	－2263．2	556800	451008	49.2762918	\＄44．34866267	0.943	42.67452055	12.8023561
－0．0021	－2304．96	556800	451008	48.8278711	43．9450839 ${ }^{\text {d }}$	0.9604	42.28617679	12.6858530
－0．0022	－2340．48	371200	133632	39.56410897	23．7384653\％	0.9752	34.26352344	4.85270468
－0．0023	－2368．32	371200	133632	39.33088015	23．5985280¢	0.9868	34.06154136	6.81230827
－0．0024	－2386．08	185600	16704	$27.7074372 \$$	\＄8．31223117\＄	0.9942	23.99534453	2.39953445
－0．00249	－2398．608	185600	16704	27.63498414	48.29049524β	0.99942	23.9325983	2.3932598

Tangent Modulus Buckling - Numerical

Figure 6.7.1
Column strength curves for H -shaped sections having compressive residual stress at flange tips. (Adapted from Ref. 6.20, p. 39)

Figure 6.7.2
Comparison of AISC equations for F_{cr} for columns with data from physical tests. (Test data from Hall [6.24])

ELASTIC BUCKLING OF BEAMS

- Going back to the original three second-order differential equations:

$$
2 \begin{aligned}
& 1 \begin{array}{l}
\text { Therefore, } \\
E I_{x} v^{\prime \prime}+P v-\phi\left(P x_{0}+M_{B Y}-\frac{z}{L}\left(M_{T Y}+M_{B Y}\right)\right)=M_{B X}-\frac{z}{L}\left(M_{T X}+M_{B X}\right) \\
E I_{y} u^{\prime \prime}+P u-\phi\left(-P y_{0}+M_{B X}-\frac{z}{L}\left(M_{T X}+M_{B X}\right)\right)=-M_{B Y}+\frac{z}{L}\left(M_{T Y}+M_{B Y}\right), \\
E I_{w} \phi^{\prime \prime \prime}-\left(G K_{T}+\bar{K}\right) \phi^{\prime}+u^{\prime}\left(-M_{B X}-\frac{z}{L}\left(M_{B X}+M_{T X}\right)+P y_{0}\right) \\
\quad-v^{\prime}\left(M_{B Y}+\frac{z}{L}\left(M_{B Y}+M_{T Y}\right)+P x_{0}\right)-\frac{v}{L}\left(M_{T Y}+M_{B Y}\right)-\frac{u}{L}\left(M_{T X}+M_{B X}\right)=0
\end{array}
\end{aligned}
$$

ELASTIC BUCKLING OF BEAMS

- Consider the case of a beam subjected to uniaxial bending only:
- because most steel structures have beams in uniaxial bending
- Beams under biaxial bending do not undergo elastic buckling
- $P=0 ; \quad M_{T Y}=M_{B Y}=0$
- The three equations simplify to:
- Equation (1) is an uncoupled differential equation describing inplane bending behavior caused by $M_{T X}$ and $M_{B X}$

ELASTIC BUCKLING OF BEAMS

- Equations (2) and (3) are coupled equations in u and ϕ - that describe the lateral bending and torsional behavior of the beam. In fact they define the lateral torsional buckling of the beam.
- The beam must satisfy all three equations (1, 2, and 3). Hence, beam in-plane bending will occur UNTIL the lateral torsional buckling moment is reached, when it will take over.
- Consider the case of uniform moment $\left(\mathrm{M}_{\circ}\right)$ causing compression in the top flange. This will mean that
- $-\mathrm{M}_{\mathrm{BX}}=\mathrm{M}_{\mathrm{TX}}=\mathrm{M}_{\mathrm{o}}$

ELASTIC BUCKLING OF BEAMS

For this case, the differential equations (2 and 3) will become:

$$
\begin{aligned}
& E I_{y} u^{\prime \prime}+\phi M_{o}=0 \\
& E I_{w} \phi^{\prime \prime \prime}-\left(G K_{T}+\bar{K}\right) \phi^{\prime}+u^{\prime}\left(M_{o}\right)=0 \\
& \text { where }: \\
& \bar{K}=\text { Wagner's effect due to warping caused by torsion }^{\bar{K}=\int_{A} \sigma a^{2} d A} \\
& B u t, \sigma=\frac{M_{o}}{I_{x}} y \Rightarrow \text { neglecting higher order terms } \\
& \therefore \bar{K}=\int_{A} \frac{M_{o}}{I_{x}} y\left[\left(x_{o}-x\right)^{2}+\left(y_{o}-y\right)^{2}\right] d A \\
& \therefore \bar{K}=\frac{M_{o}}{I_{x}} \int_{A} y\left[x_{o}^{2}+x^{2}-2 x x_{0}+y_{o}^{2}+y^{2}-2 y y_{0}\right] d A \\
& \therefore \bar{K}=\frac{M_{o}}{I_{x}}\left[x_{o}^{2} \int_{A} y d A+\int_{A} y\left[x^{2}+y^{2}\right] d A-x_{0} \int_{A} 2 x y d_{A}+y_{o}^{2} \int_{A} y d A y^{2} 2 y_{o} \int_{A} y^{2} d A\right]
\end{aligned}
$$

ELASTIC BUCKLING OF BEAMS

$$
\begin{aligned}
& \therefore \bar{K}=\frac{M_{o}}{I_{x}}\left[\int_{A} y\left[x^{2}+y^{2}\right] d A-2 y_{o} I_{x}\right] \\
& \therefore \bar{K}=M_{o}\left[\frac{\int_{A} y\left[x^{2}+y^{2}\right] d A}{I_{x}}-2 y_{o}\right] \\
& \therefore \bar{K}=M_{o} \beta_{x} \quad \Rightarrow \text { where, } \beta_{x}=\frac{\int_{A} y\left[x^{2}+y^{2}\right] d A}{I_{x}}-2 y_{o} \\
& \beta_{x} \text { is a new sec tional property }
\end{aligned}
$$

The beam buckling differential equations become:
(2) $E I_{y} u^{\prime \prime}+\phi M_{o}=0$
(3) $E I_{w} \phi^{\prime \prime \prime}-\left(G K_{T}+M_{o} \beta_{x}\right) \phi^{\prime}+u^{\prime}\left(M_{o}\right)=0$

ELASTIC BUCKLING OF BEAMS

Equation (2) gives $u^{\prime \prime}=-\frac{M_{o}}{E I_{y}} \phi$
Substituting $u "$ from Equation (2) in (3) gives :
$E I_{w} \phi^{i v}-\left(G K_{T}+M_{o} \beta_{x}\right) \phi^{\prime \prime}-\frac{M_{o}{ }^{2}}{E I_{y}} \phi=0$
For doubly symmetric section: $\beta_{x}=0$
$\therefore \phi^{i v}-\frac{G K_{T}}{E I_{w}} \phi^{\prime \prime}-\frac{M_{o}{ }^{2}}{E^{2} I_{y} I_{w}} \phi=0$
Let, $\lambda_{1}=\frac{G K_{T}}{E I_{w}} \quad$ and $\quad \lambda_{2}=\frac{M_{o}{ }^{2}}{E^{2} I_{y} I_{w}}$
$\therefore \phi^{i v}-\lambda_{1} \phi^{\prime \prime}-\lambda_{2} \phi=0 \Rightarrow$ becomes the combined d.e.of LTB

ELASTIC BUCKLING OF BEAMS

Assume solution is of the form $\phi=e^{\lambda z}$
$\therefore\left(\lambda^{4}-\lambda_{1} \lambda^{2}-\lambda_{2}\right) e^{\lambda z}=0$
$\therefore \lambda^{4}-\lambda_{1} \lambda^{2}-\lambda_{2}=0$
$\therefore \lambda^{2}=\frac{\lambda_{1}+\sqrt{\lambda_{1}^{2}+4 \lambda_{2}}}{2}$

\therefore Let, $\lambda= \pm \alpha_{1}$, and $\pm i \alpha_{2}$

Above are the four roots for λ
$\therefore \phi=C_{1} e^{\alpha_{1} z}+C_{2} e^{-\alpha_{1} z}+C_{3} e^{i \alpha_{2} z}+C_{4} e^{-i \alpha_{2} z}$
\therefore collecting real and imaginary terms
$\therefore \phi=G_{1} \cosh \left(\alpha_{1} z\right)+G_{2} \sinh \left(\alpha_{1} z\right)+G_{3} \sin \left(\alpha_{2} z\right)+G_{4} \cos \left(\alpha_{2} z\right)$

ELASTIC BUCKLING OF BEAMS

- Assume simply supported boundary conditions for the beam:

$$
\begin{aligned}
& \therefore \phi(0)=\phi^{\prime \prime}(0)=\phi(L)=\phi^{\prime \prime}(L)=0 \\
& \text { Solution for } \phi \text { must satisfy all four b.c. } \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
\alpha_{1}^{2} & 0 & 0 & -\alpha_{2}^{2} \\
\cosh \left(\alpha_{1} L\right) & \sinh \left(\alpha_{1} L\right) & \sin \left(\alpha_{2} L\right) & \cos \left(\alpha_{2} L\right) \\
\alpha_{1}^{2} \cosh \left(\alpha_{1} L\right) & \alpha_{1}^{2} \sinh \left(\alpha_{1} L\right) & -\alpha_{2}^{2} \sin \left(\alpha_{2} L\right) & -\alpha_{2}^{2} \cos \left(\alpha_{2} L\right)
\end{array}\right] \times\left\{\begin{array}{l}
G_{1} \\
G_{2} \\
G_{3} \\
G_{4}
\end{array}\right\}=0} \\
& \text { For buckling coefficient matrix must be sin gular : } \\
& \therefore \text { det er } \min \text { ant of matrix }=0 \\
& \therefore\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right) \times \sinh \left(\alpha_{1} L\right) \times \sin \rrbracket\left(\alpha_{2} L\right)=0 \\
& \text { Of these }: \\
& \text { only } \sin \llbracket\left(\alpha_{2} L\right)=0 \\
& \therefore \alpha_{2} L=n \pi
\end{aligned}
$$

ELASTIC BUCKLING OF BEAMS

$$
\begin{aligned}
& \therefore \alpha_{2}=\frac{n \pi}{L} \\
& \therefore \sqrt{\frac{\sqrt{\lambda_{1}^{2}+4 \lambda_{2}}-\lambda_{1}}{2}=\frac{\pi}{L}} \\
& \therefore \sqrt{\lambda_{1}^{2}+4 \lambda_{2}}-\lambda_{1}=\frac{2 \pi^{2}}{L^{2}} \\
& \therefore \lambda_{2}=\frac{\left(\frac{2 \pi^{2}}{L^{2}}+\lambda_{1}\right)^{2}-\lambda_{1}^{2}}{4}=\frac{\left(\frac{2 \pi^{2}}{L^{2}}+2 \lambda_{1}\right)\left(\frac{2 \pi^{2}}{L^{2}}\right)}{4} \\
& \therefore \lambda_{2}=\left(\frac{\pi^{2}}{L^{2}}+\lambda_{1}\right)\left(\frac{\pi^{2}}{L^{2}}\right) \\
& \therefore \lambda_{2}=\frac{M_{o}{ }^{2}}{E^{2} I_{y} I_{w}}=\left(\frac{\pi^{2}}{L^{2}}+\frac{G K_{T}}{E I_{w}}\right)\left(\frac{\pi^{2}}{L^{2}}\right) \\
& \therefore M_{o}=\sqrt{\left(E^{2} I_{y} I_{w}\right)\left(\frac{\pi^{2}}{L^{2}}+\frac{G K_{T}}{E I_{w}}\right)\left(\frac{\pi^{2}}{L^{2}}\right)} \\
& \therefore M_{o}=\sqrt{\frac{\pi^{2} E I_{y}}{L^{2}}\left(\frac{\pi^{2} E I_{w}}{L^{2}}+G K_{T}\right)}
\end{aligned}
$$

